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TLS: A New Two Level Simulation
Methodology for High-Reynolds LES

K. Kemenov? S. Menon!
School of Aerospace Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

A new two-level simulation (TLS) approach, which treats resolved and small scales
separately, is proposed and evaluated for applicability to 1D randomly forced Burgers
turbulence and 3D high Reynolds number turbulent channel flow. The resolved and
small-scale equations are derived based on the decomposition of the velocity into two
components, and the large and small scales interact nonlinearly through interaction terms
that are responsible for energy transfer between scales. In contrast to conventional LES
approaches (where the small-scale field is approximated on the resolved grid using resolved
properties), the small-scale evolution equations are solved directly on three orthogonal
1D grids (that are independent of the resolved 3D grid) to reconstruct the small-scale
velocity field. The contribution of this small-scale field then appears as an effective forcing
term in the resolved-scale equations. This TLS concept is first demonstrated using 1D
randomly forced Burgers turbulence and then applied to study 3D turbulent channel flow.

1 Introduction

Simulation of very high Reynolds (Re) number wall-
bounded flows is computationally very expensive be-
cause the near wall region has to be properly resolved
in order to achieve accurate prediction. Past affordable
studies using direct numerical simulations (DNS) have
been limited to relatively low Re (500-2000 based on
wall units).! However, the typical Re associated with
wall-bounded flows of practical interest can be an order
(or more) of magnitude higher. DNS is obviously im-
possible for such flows even with the projected speedup
of the next generation computers and large-eddy sim-
ulations (LES) may be the only viable approach to
study these flows. However, current LES methodology
based on solving the spatially filtered LES equations
with a model for the effect of unresolved motion have
been only partially successful since it appears that
even for LES of wall-bounded flows, the near wall res-
olution has to be close to the resolution needed for
DNS.Z Many past and on-going studies® ¢ are inves-
tigating approaches that will allow a reduction of the
near wall resolution without sacrificing accuracy. Al-
though some significant progress has been achieved in
these studies, there still remain many unresolved is-
sues. In particular, the ability to carry out accurate
LES of high-Re wall-bounded flows that transition to
separated shear flows (a situation that occurs in many
practical devices) has not yet been demonstrated.

The present effort is focused on developing a new
approach for LES of high Re flows that departs signifi-
cantly from conventional methods used in LES. In con-

*Graduate Research Assistant
tProfessor, AIAA Associate Fellow

Copyright © 2002 by Menon, Kemenov. Published by the American In-
stitute of A ics and Ast ti Inc. with permission.

1

ventional LES, the spatially filtered LES equations are
solved on a “resolved” grid with a subgrid model that
represents the effect of the unresolved scales of motion
on the resolved motion. Current state-of-the-art sub-
grid models specify the grid scale as the characteristic
length scale and differ primarily in the specification
of the velocity scale. The algebraic Smagorinsky’s
model® uses the resolved rate-of-strain and the grid
scale to estimate the velocity scale whereas, the one-
equation Schumann model® solves the transport equa-
tion for the subgrid kinetic energy to predict the length
scale. Dynamic variants of these models’ attempt
to estimate the “constant(s)” in the model, locally
in space and time as a part of the solution, thereby
eliminating the need to a priori assigning any con-
stants. In this approach, scale similarity between the
grid scale and a ‘test’ scale (which is typically twice
the size of the grid scale) is employed to determine
the coefficients of the model. However, in complex
flows with no homogeneous directions, and in compu-
tational methodology that employs an unstructured
grid topology, a truly localized (in space) scale-similar
test filtering approach may not be stable or even de-
finable. In the present effort, a new approach is being
developed that is not constrained by these issues. This
approach is described in some detail in the present pa-
per.

The currently popular eddy viscosity SGS models
have other problems as well since these models treat
subgrid stresses as purely dissipative in nature and
thus, fails to take into account important physical
phenomena such as the inverse cascade of energy or
backscatter - wherein energy is transferred from the
smallest to the largest scale.®® Although models that
employ an additional forcing term in the governing
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equation'®!2 have been proposed to model backscat-
ter, these models still remain un-validated for high
Reynolds number turbulent flows. The simulation ap-
proach demonstrated in this paper obviates the need
to define a subgrid eddy viscosity and allows full two-
way energy transfer to be incorporated within a single
formulation. Thus, in the proposed TLS formulation,
both forward and back scatter effects are included
without any a priori model specification.

The present approach is similar to several alterna-
tive approaches (referred loosely here as “decompo-

sition” approaches) that have emerged in literature |

recently. In contrast to LES, where decomposition of
turbulent velocity into two components, resolved and
small-scale (unresolved), is introduced through spatial
filtering and the major effort is concentrated on SGS
modelling, in ”decomposition” approaches consider-
able attention is devoted to modeling of small-scale
velocity itself. This usually involves a derivation of
governing equation for small-scale velocity with its
subsequent simplification based on some physical ar-
guments. )

Clearly, a particular form of the small-scale equation
as well as the precise meaning of the small-scale veloc-
ity depends on how the velocity field is decomposed
into resolved and small-scale components. In recent
studies,'® 4 a two-fluid model has been proposed for
two-dimensional turbulent flows. In this approach,
small-scale equations are derived by simple subtraction
of the filtered LES equation from the full Navier-Stokes
equation. Then, by neglecting or modeling the inter-
action small scale terms leads to a linear form of the
small-scale equation which somewhat resembles the
RDT (rapid distortion theory) equation for turbulent
velocity. The approach was further applied to study in-
termittency in decaying three-dimensional turbulence
and renamed as the RDT model.!®

An alternative approach in context of two-
dimensional flows is the decomposition approach that
employs a projection onto the eigenfunctions of the
Stokes operator!® 17 using a rigorous concept of ap-
proximate inertial manifolds (AIM). In physical sense,
an AIM can be interpreted as a functional dependence
of the small-scales upon resolved scales. A class of
numerical schemes related to AIM and referred to as
multilevel methods, have been proposed and applied
to the study of two and three-dimensional turbulent
flows.!® In a similar vein, a variational multi-scale
method!? 20 has been used to study decaying isotropic
turbulence in spectral space.?!’ However, in this ap-
proach, the resolved and small-scale equations are ob-
tained as a projection, respectively on the first half and
the second half of the (Fourier) resolvable modes with
a subsequent correction of the small-scale equations by
adding an eddy viscosity type term to account of the
subgrid scale effects on the second half of the resolv-
able scales (which are considered to represent small

scales in the multi-scale formulation).

Yet another somewhat related approach explicitly
models the small-scale velocity field using a subgrid-
scale velocity estimation approach.!? In this model,
the small-scale equation is not considered, instead the
unfiltered velocity is approximated by expanding the
resolved velocity to a scale that is two times smaller
than the grid scale. That is, the resolved or LES equa-
tions are solved on twice-finer grid and then the solu-
tion is interpreted as an approximation to the sum of
resolved and small-scale velocities which makes it pos-
sible to estimate the small-scale velocity and the sub-
grid stresses explicitly. Other approaches that consider
direct modeling of small-scale velocity field via heuris-
tic stochastic models have also been proposed, such as
the small-scale fractal interpolation procedure?? or the
additive turbulent decomposition (ATD).23

In this paper, a two-level simulation (TLS) method--
ology is discussed in which both the resolved and
unresolved scales of motion are simulated within a
single simulation model. Regardless of how this ap-
proach is implemented it is apparent that if both the
resolved and unresolved scales are simulated in three
dimensions then this approach is no different than a
DNS, and therefore, unviable. In order to implement
this approach within the context of LES, we have de-
veloped a new approach in which the resolved scale
motion are simulated using a ’large-scale’ model that
is forced by the unresolved motion. The unresolved
motion (i.e., the subgrid flow field) evolves on another
grid that is locally one-dimensional. This reduction
in dimensionality allows the coupled TLS approach to
be computationally feasible and applicable to high Re
flow simulations.

In this paper, the mathematical formulation of the
TLS approach is first developed and used to simu-
late one-dimensional Burger’s turbulence. Then, the
formulation is extended to simulate three-dimensional
channel flows.

2 Formulation

We begin the TLS formulation by first describ-
ing the decomposition method as applied to the one-
dimensional Burger’s equation and then extending it
to the full three-dimensional Navier-Stokes equations.

2.1 Two-Scale decomposition of the Burgers
equation

We consider the one dimensional Burgers equation
with a large scale random forcing f(z,t):

Ou 10uu 8%u
'é?+§a_z—l'5ﬁ+f(z’t)’ (1)

subject to the boundary and initial conditions:

u(0,t) =a, u(L,t)=05, u(z,0)=wo(z) 2)
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We split the velocity field into large-scale and small-
scale components:

’U(x,t) = u’"(z’ t) + uc(zat), (3)

where the resolved scale is defined as a filtered quantity
with respect to some spatial filter h,(z),

+00
up(2,1) = / Wy, Dbz —g)dy  (4)

-0

Although spatial filtering is not explicitly required

in the TLS formulation, for demonstration purposes,

we consider both spectral and physical space explicit
filtering. When h, is a spectral cut-off filter, it is con-
venient to define the small-scale spectral cut-off filter
h, as a filter that preserves scales between cut-off wave
number k. and some characteristic dissipation cut-off
wave number k,, (which represents the smallest impor-
tant scale). Then, the small-scale velocity is given as

(5)

— 00

+o00
ug(z,t) = / w(y, hhs(z — y)dy

In spectral space, the corresponding resolved and
small-scale components of spectral velocity can be
written as follows:

u(k,t), |k <k

8o (k,1) = Gk, )b (k) = { 0, K>k ©
0’

u(k,t),

k| < ke, k| > Ky
‘kl > kc,|k| S kfl

(7
where spectral velocity 4(k, t) is the Fourier transform
of u(z,t) :

Ta(k, 8) = Gk, O)ha (k) = {

1 [t
ulk,t) = 2—ﬂ_/ u(z, t) exp(—iz)dz,
—00

and ﬁr(k) is a spectral cut-off filter, e (k) is a spectral
small-scale cut-off filter.

Inserting the decomposed velocity (3) into (1) and
taking a convolution with resolved and small-scale fil-
ters give a coupled system of resolved and small-scale
equations:

Our  1rlupu,y 8%u,

ot +§[ oz ], = Va2 —Ir(w,t)~5r(z,t)+f(z,:;;
Ou, 110usu, _ &%u,

ot 5[ oz ],_Vaza — Ry(x,t) — Iy(z,t), (9)

where coupling terms are given as a convolution in-
tegrals:

I(z,t) = [ag':‘]r = %/:o

Ou,u,
he(z - y)_ay_ dy,

(10)

3

1rdu,u 1 [t Ou,u
S,-(:L',t)=“[ 2 a]'_:ﬁ’/; h"’(z_y) 8dya

2l Oz Jy
(11)
Ou,u, I Ou,u,
(12)
_110umu,y 1 +oo Ouru,
R’(z’t)-i[ Oz ]s— 27 J_oo ha(z —y) ) 4y,
(13)

We note that each term in the resolved scale equa-
tion (8) has a spectral support equal to [—k., k;} and
constitutes a resolved quantity. Similarly each term
in the small-scale equation (9) has a spectral support
[—ky, —kc] U [ke, ky] and therefore, represents a small-
scale quantity. It also can be seen that the TLS analog
of the Leonard stress R;(x, t) appears in the small scale
equation as a forcing term since a nonlinear product
of resolved velocities u,u, has a spectral support that
is larger (by a factor of two) of u,(z,t). We write this
symbolically as

Ou,ruy
supplur] = [~ke, k], supp[ 2

] = [~2ke, 2k
(14)
However, the spectral cut-off filter has a disadvan-
tage of being applicable only in periodic domains be-
cause of the finite spectral support of the resolved
velocity. This results in an infinite support of the re-
solved velocity in physical space which can be satisfied
only by invoking a periodic domain assumption. For
practical application of this TLS approach, periodic
physical space domain is not acceptable. For physical
space application, the small-scale velocity still can be
defined based on the decomposition formula (3) rather
than on explicit convolution integral. Thus, in a gen-
eral case we define the small-scale quantities as

us(z,t) = u(z, t) — up(z, )
I(z,t) = I(z,t) — I (x,t)
R,(z,t) = R(z,t) — R/(z,t)
S,(z,t) = S(z,t) — Sy(x,t)

Subtracting the resolved scale equation (8) from
the original Burgers equation and applying the above
definition produces exactly the same form of the small-
scale equation (9) (which was obtained using the spec-
tral cut-off filter). Note that, the resolved scale equa-
tion (8) is in the form of the LES equation:

(15)

du,

10u,ru, 8%u,
ot

Y OTsgs
2 fr = Oz2

oz

However, here the “subgrid” stress term is given as:

+ + f(z,t), (16)

OT;g5

oz

_1 ouru, 1 [6u,u,

"2l 6z

B 2 Oz 2 ]r - If‘(z’ t) - Sr(x,t)

(17)
= Ry(z,t) — I.(z,t) — Sp(z,1).
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To assess the role of the interaction terms in en-
ergy transfer between scales it is convenient to analyze
spectral energy equations for resolved and small scales.
Multiplying the resolved and small-scale equations in
spectral space by the complex conjugates of the re-
solved and small-scale velocities results in an equation
for the resolved spectral energy E, and for the small-
scale spectral energy E,:

BaE;‘, +To(k,t) + k*vE, = F(k,t) + Eb(k,t) + EL (k, 1)
R (18) -
B, | 7.k K*vE, = Eb(k ES
B + Ts(k,t) + k°vE, = E](k,t) + E!(k,t) (19)

where the source terms represent energy spectra of the
scale interaction term and are defined in spectral space
as:

5 1 o o oo o 1 T =% Ta
Ef = im(sf'ur + Sr“")? Eg = 532(13"5 + Is ‘U,,),
(20)
o 1 T o T ol 1 D o D*~
Ef = SR + ITa,), Ef = SRR, + Ria,),
‘ (21)

Here, @ is the complex conjugate to @, and R is the
real part. The sign of each energy source term defines
a direction in which energy is transferred due to an ac-
tion of a corresponding interaction term. For example,
the interaction term R,(z,t) would supply energy to
small scales if E{ (k,t) is positive. Similarly, the inter-
action term I,.(z,t) would remove energy from large
scales if Ef (k,t) is negative.

In this paper, we study the role of these interaction
terms in energy transfer between scales to determine
how energy is transferred from the large to the small
scales and vice versa.

2.2 Two-Scale decomposition of the 3D
Navier-Stokes equations

The methodology described above is applicable to
the 1D Burger’s equation. However, for more practi-
cal applications, we need to do a similar decomposition
in 3D flows. To demonstrate this approach for 3D
flows, we consider the incompressible Navier-Stokes
equations:

Ou;  Ouwu; _ Op &%u;

ot * oz, om0 (22)
Bu,-
3z 0, (23)

and split the velocity field into resolved and smali-
scale components as noted earlier

ui(Z,t) = ul(Z,t) + ui(Z,1). (24)

On applying this splitting to the Navier-Stokes

equation produces the following resolved scale equa-
tions:

4

oup oy _ o o
5t +[—5-:£J—-]r = —5.’12_.'_*-”627? —S,‘(xat)—li (.’L‘,t),
5 (25)
uj
6:1:,- =0

where scale interaction terms on the right hand side
are given as

6 7,8
I}(3,8) = [ 5 (ujuf +ujul)] (26)
7 T
Sulus
Si(z, 0 = [5-2]
¥ r

Here, [], indicate terms that are resolved on the
“large” scale grid.

The small-scale equations are obtained by subtract-
ing the resolved equations from the original Navier-
Stokes equations. This gives

dui  roufuiy  9p® O . o
ot +[ or; ] - ‘;9;+”79;J;—R,-(z,t)—1,. (,t)
(27)
ou!
83:,- =0

Here, all small-scale quantity are defined based on de-
composition

- oulu’ outu” Oulu’
s |t J = R:—RT = LA L]
R’ [ 6.’11_1 ]s - R1 R‘ Bx,- [ 8:z:j ]r (28)
Oufuf Ouju] rOufu;j
5 — =5; — Vo — | — 2
S’ 6:::J- ]s S S’ aa:j [ a.’l,’j ]r ( 9)
8 __ 0 r, 8 r,.s — T. r __ 0 r..8 r,.8 r
If = [39:]' (uiuj+uju,-)]8 =L-I] = 3z, (ujuj+ujui)-1;

(30)
The resolved scales affects the small-scale dynam-
ics through the interaction terms R}(Z,t) and I?(Z,t)
which are responsible for supplying/removing energy
from the small-scales. In our model, we speculate that
the derivative of the term RI(Z,t) is a primary sup-
plier of energy to the small-scales. The small-scale
equation (27) can be rewritten in the form containing
only resolved parts of interaction terms (similar to the
one-dimensional case described earlier):

Ou? 0 v s . s oD 9%u?
(31)

+R; + I + S7.
The small-scale pressure equation follows from the
standard Poisson equation for total pressure
a2pa
= =
oz}

_®p Bl +up) 0l +u))

or? dz; Oz;

(32)
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and can be viewed as an alternative to the small-scale
continuity equation. Therefore, if the resolved scale
velocity and pressure fields are known, the small-scale
velocity and pressure can be reconstructed by solving
the above two equations.

A numerical simulation of the above small-scale
equations is quite challenging and will require com-
putational effort similar to that for a DNS. Therefore,
to model the small-scale turbulent velocity field effi-
ciently and with a high physical fidelity, the small-scale
equations must be simplified while retaining the under-

lying picture of scale interaction. This is described in

the next section.

3 Numerical Implementation

This section summarizes the numerical implementa-
tion of the TLS formulation in both the 1D Burger’s
and 3D N-S formulation.

3.1

The small-scale equation (9) is not in form suitable
for computations since it contains the small scale com-
ponent of the product of two small-scale velocities. It
is more convenient to recast the equation in another
(but equivalent) form by adding the resolved parts of
corresponding product terms to both sides of the equa-
tion. After some rearrangements, this results in the
following form of the small-scale equation

Burger’s Equation

%4_16(14, +u,)? yazus
at 2 Oy T oy

(33)
In the present numerical simulations we associate a
coarse grid {z;} with the resolved scale coordinate z
and a fine scale grid {y;} with the small-scale coordi-
nate y. Thus, for a given resolved velocity u,(x) on the
coarse grid we solve (33) on the fine grid. The resolved
quantities u,.(z) and R.(z) are known on the coarse
grid and thus, can be interpolated on to the fine grid as
piecewise linear functions. Note that, the interaction
terms S,(y,t) and I.(y,t) are obtained automatically
in the course of computation of the small-scale equa-
tion (33) and can be used to close the resolved equation
(8). This suggests a following algorithm for the two-
scale simulation of Burgers equation:

e At time ¢, having the known resolved velocity
ur{z) on the coarse grid {z;}, interpolate it on to
the fine grid {y;} and compute the forcing term
R.(y). Thus,

ur(o) = ury) — Re) = 5[ 2],

¢ Solve (33) to find the small-scale velocity u,(y,t)
on the fine grid {y;}

+R.(y, t)+Sr(y, t)+ 1. (y, 1)

5

e Compute the interaction terms I.(z), S.(z) on
the coarse grid {zi}

Prte]

I(z) «— L) =[5

6u8u,] )
r)

5:(z) — $:0) = 5[5

e Advance the resolved velocity u,(z,t) at time ¢t +
At, by solving the resolved equation (8) on the
coarse grid {z;}.

The results of these simmulations are discussed in this
paper.
3.2 3D Channel Flow

As mentioned earlier, the full two scale simulation
model is not viable due to DNS comparable resource
requirement. In the light of this, we propose a new
simplified model for reconstructing the small-scale ve-
locity field. In some respect this is consistent with the
framework of the One-Dimensional Turbulence (ODT)
approach originally developed by Kerstein and co-
workers?4 25

In ODT approach, turbulent velocity and other
properties are simulated along one-dimensional line of
sight through a 3D turbulent flow. The reduction to
1D domain makes the model computationally efficient.
However, a correct formulation and implementation of
ODT model, as a closure for subgrid scale fluxes, is not
straightforward and is still an area of active research.?
The baseline ODT model has a disadvantage since it
is not able to take into account the effects of resolved
velocity on the modeled small-scale velocity field, thus
somewhat hindering a forward energy cascade picture.
Here, we propose an extension of ODT to address this
issue.

To model the small-scale turbulent velocity field in
a 3D domain 2, we consider a family of 1D ODT lines
arranged as 3D lattice embedded in Q. The family con-
sists of three types of lines {l;,l2,l3} orthogonal each
other and paraliel to corresponding Cartesian coordi-
nates ;. The lines of each type intersects each other
at a center of a cell which is defined by the resolved
grid in the domain 2. The line arrangement is shown
in Fig.6. We model the 3D small-scale velocity field as
a family of 1D small-scale velocity vector fields defined
on the underlying family of lines {I;,12,13}

uf(z,t) — uly (1), 2€Q, L €R
The small-scale velocity field ug, (I;,t) can be viewed
as a snapshot of the smali-scale 3D turbulent field
along the line {l/;} somehow oriented in computa-
tional domain § (in principle, the orientation of this
1D line can be arbitrary but in the present effort is
along the resolved grid lines). The small-scale veloc-
ity fields evolve according to simplified 1D governing
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equations that can be obtained from the basic small-
scale equation (31) by utilizing assumptions made in
the definition of ODT model. Namely, since the veloci-
ties are defined on 1D lines, all derivatives with respect
to directions other than along the line in considera-
tion are set to zero. This gives a following system of
ODT equations for small-scale velocities defined on the
family of lines {I¥,152, 1%, k; = 1,...,N;;5 = 1,2,3},
where N; is the number of lines of jth type,

2, 8

0%uf;
(hup) @y +us)) = v—?
J

ous,
u”+i

ot ol j

+RI+IT+ST

(34)
Here, the following notation is used: wuf;(l;,t) =
uf; (l;,t) represents the i-th component of the small-
scale velocity belonging to j-th type of line, the upper
index corresponding to the line number in l;" is also
dropped for notation simplicity and interaction terms
are defined on the j-th line, i.e., R] = R} (l;,t) and so
on. The system of ODT equations (34) does not have
pressure term because the continuity requirement for
small-scale velocities defined on lines is relaxed. }

For example, the ODT equations along I; lines
(which are parallel to z-coordinate of the resolved grid)
gives the following system of equations 9denoting for
simplicity, uf;(l1,t) = (u®, v, w?)):

du* _ O(u*+w")? 0%’ O(u® +u")?
ot~ oL o S, @
ov® o R s o 0%
-3—t+a—ll'((’u +u")(v +U))—V—a—l-:'l2—+ (36)
8
[6_11 (W +un)( + vf))] )
6’“}8 a 8 T 8 T — ws
W“La_ll((“ +u")(w’ +w")) =vgEt @)

[a% ((us +u")(w? + w’))] .

The resolved velocity is assumed to be known on each
line so the forcing terms on the right hand side can
be easily computed. Note that, on different line the
system will generate different small-scale fields since
the resolved velocity is changing from line to line.

We apply our TLS approach to simulate 3D tur-
bulent channel flow. The computational domain is
parallelepiped §? = 27 x 2 x %w which discretized by
a coarse resolved grid with stretching in wall normal
directions. The numerical algorithm, which is similar
to the one used for the Burgers equation case, is

e At time ¢, having known resolved velocity u}(Z,t)
on the coarse grid (obtained using a conventional

lthe straightforward enforcing of continuity equation on a
line leads to trivial case of a constant velocity profile

6

staggered grid finite-volume scheme?®), interpo-
late it on each ODT line {I;} and compute the

forcing term R](l;)

our.u’.

uf(@) — ) — R = [—54] ;
Solve the ODT small-scale system (34) on each
line with corresponding boundary condition to
find uf;(l;);

o Compute the interaction terms I](Z), ST (Z) on
the resolved (LES) grid

T 8

Ouluf,
I}@) — L) = [
J
Oulul;
S1(®) — S = [
] r

Advance the resolved velocity ul(Z,t) at time
t + At, by solving the resolved equation on the
resolved grid.

3.3 Near-Wall ODT Implementation

Earlier, the ODT model was implemented primar-
ily as a near wall model following the work done at
Sandia.? In this approach, the ODT domain was a 1D
wall normal line in the first LES cell near the wall.
This approach solves a reduced form on the 1D model
described above in this first LES cell and the near-wall
ODT was linked to a conventional LES model used in
the rest of the domain. However, in this approach the
velocity splitting into the small-scale (ODT) and the
resolved (LES) velocities has a different meaning and
constitutes a geometrical splitting rather than func-
tional splitting adopted in TLS. As a result, the ODT
velocity is defined only in the first boundary cell and
evolves according to the following advection-diffusion
equation:

8’!1.: a s _ 62"': 3 LES
o+ 5 (1Vi) =v g — g P e (39)

where the vector € = (1,0, 1) is introduced to neglect
the pressure gradient in wall normal direction and V;
is the local advective velocity field defined as a time
average of ODT velocity field over the LES time step.
More details are given elsewhere.3

The ODT resolution in the first LES cell is fine
enough to resolve the viscous sublayer and the buffer
layer and therefore, the LES resolved grid did not have
to resolve this region. As a result, significant reduction
in computational effort is achieved by this.method.
However, this approach requires explicit coupling mod-
els to link the near-wall ODT with the conventional
LES model away from the wall and special rules has to
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be devised to allow the two disparate simulation proce-
dures to be coupled together. Although very encourag-
ing results were reported earlier® and also achieved in
the present study (see results discussed below), simula-
tions also showed that the coupling of the two models
is not very robust and in particular, the coupling al-
gorithm had to be explicitly built around the actual
numerical algorithm used for the LES model. Fig-
ure 13 shows schematically the coupling between the
near-wall ODT with the LES model. More details are
given elsewhere® and therefore, not described here for

brevity. The implication of this coupling is however,

discussed in this paper.

It is worth noting here that the TLS model described
in the previous section removes all the problems noted
with the coupling of the near-wall ODT with LES and
is applicable in any resolved scale numerical solver.
Therefore, the final version of the TLS approach would
involve a combination of the TLS model described in
the previous section and the near-wall ODT. In this
paper, we discuss the results of independent imple-
mentation of each of these model. The fully coupled
model predictions will be reported in the near future.

4 Results and Discussion
4.1 Forced Burger’s Turbulence

To study the role of the interaction terms we per-
formed a series of numerical simulations of randomly
forced Burgers equation on a periodic domain of length
L = 1. For direct simulation (DNS) we used a fine
resolution grid with N, = 16324 grid points and vis-
cosity coefficient equal to ¥ = 5. 107%. Simulation
was carried out for a time range 0 < t < 750 using
a second-order accurate predictor-corrector scheme.
The forcing was simulated in physical space as a white
random noise in x with zero mean. To mimic the TLS
approach, the forcing was explicitly filtered in spec-
tral space to suppress all modes beyond a force cut-off
number ks which was chosen to be approximately two
time less then a scale separation. cut-off number k.,
supp(f(y,t)) = [—kys, ky]. To separate scales into two
components, a cut-off wave number was chosen in the
inertial range and equal to k. = 128.

The statistically steady turbulent solution was
reached after approximately t,, = 50. The time-
averaged energy spectra of the interaction terms
(EL(k))1, (E{(K))T, (E2(K))T, (E}(K))T and the en-
ergy spectrum (E(k))T are computed as an average
of instantaneous spectra at times t; = t,, + jT, where
tss is the time to establish the statistically steady state
and T = 10.

To study the role the interaction term it is conve-
nient to represent a coupled set of equations (8), (9)
by a diagram as given in Fig.1. 2

The upper part and the lower part of the diagram
represent respectively, the resolved scale equation (8)

2all terms on the diagram are shown in spectral space

7
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‘ vk? Gs(k)

Fig. 1 Scale interaction diagram for Burgers tur-
bulence; the upper part corresponds to LES.

and the small-scale equation (9). The effect of small
scales on the resolved field enters through interaction
terms I,(z,t) and Sy(z,t). In conventional SGS mod-
els, the net effect of these terms is parametrized by
the resolved velocity u,(z,t). Resolved scales, in their
turn, also affect small-scale dynamics due to the terms
Is(x,t) and R,(z,t). Equations shown in boxes are the
right hand sides of equations (8), (9) and represent a
non-viscous version of the Burgers equation restricted
to resolved and small scales, respectively:

w30, o
LS[US] = Q—a’u’t—s %[Q:‘%]B = 0

Interaction terms are shown as arrows pointing at or
out of a corresponding box in the scale diagram. We
may associate the direction of interaction term arrows
with a direction of energy transfer between scales.
Based on the diagram it is easy to envision a qual-
itative scenario of scale interaction at the turbulent
stationary state. An external random force f(z,t)
with a spectral support in low wave numbers pumps
energy into the resolved scales. The role of the non-
viscous operator L,[u,] is to redistribute energy among
resolved scales. Numerical simulations and statistical
analysis of the resolved non-viscous Burgers equation,
i.e., Ly[u;] = 0, with smooth initial data was a subject
of recent study?? which revealed that solution exhibits
a strong intrinsic chaotic dynamics with statistical
equipartition of energy among all resolved modes.
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Fig. 3 Time averaged spectra (Eb(k))T, (Eb(k))T of
the interaction terms S, (k), I.(k).

The time-averaged energy spectra of the various in-
teraction terms are shown in Figs. 2, 3. From Fig. 2
it is seen that the "resolved-small” interaction term
I.(z,t) removes energy from large scales and therefore,
acts as a sink of energy in the resolved scales. On the
other hand, the interaction term R,(z,t) supplies en-
ergy to small scales and thus, plays a role of a source of
energy. At the small scales, the energy is redistributed
by a non-viscous nonlinear operator L,[u,]. Further-
more, a major portion of energy is also removed by
viscous dissipation. The action of the other pair of
interaction terms (on the right hand side of the di-
agram) is shown in Fig. 3. The resolved part of the
"small-small” interaction term S, (x,t) removes energy
from resolved scales and therefore acts as a sink of en-
ergy. The role of the "mixed” interaction term I,(z,t)
is somewhat more complex. It removes energy from
wave-numbers adjacent to the cut-off wave number k.

8
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Fig. 4 Snapshots of the resolved and the small-
scale velocities.

and supplies energy to higher wave numbers. This re-
sults in the overall redistribution energy effect in favor
of the smaller scales. Thus, we may conclude that
there is no backscatter of energy present in the case.
Note that, the overall picture of energy transfer and
redistribution is independent of the choice of spatial
filter. Time averaged spectra of the interaction terms
for the case of physical box filter exhibit a similar be-
havior (and therefore, not shown here for brevity).
Typical instantaneous snapshots of the resolved and
the small-scale velocity fields are shown in Figs. 4.
One can see that the reconstructed small-scale veloc-
ity profile u,(y) captures a small-scale shock pattern
relatively well. The “resolved-scale” interaction term
R,{(z) is the most important forcing term since it de-
termines the topology of small-scale velocity field and
thus, needs to be taken in account in simplified mod-
els for the the small-scales Eq(33). It is interesting to
note that implicitly, this fact was used as a basis of
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Fig. 5 Comparison of the resolved and small-scale
spectra of TLS with DNS energy spectrum.Note
that, the TLS spectra are shifted vertically to en-
able comparison. Clearly, the TLS approach cap-
tures the resolved spectra very accurately.

the subgrid estimation model.!? Solving the Navier-
Stokes equation on a grid which is two times finer than
the original resolved grid gives an opportunity to cap-
ture a small-scale part of the nonlinear term, which is
an analogue of R,(y) in our 1D dimensional case, and
leads to more physically correct prediction of small-
scale field.

Finally, to check the performance of our model we
run the full TLS of Burgers equations using the cou-
pled algorithm described earlier. The coupled system
of the resolved scale equation (8) and the small-scale
equation (33) are solved on a coarse grid {z;,i
1,..,N.} of size N, = 512 and on a fine grid {y;,J
1,..,N,} of size N, = 16324, respectively. Energy
spectra of resolved velocity and small-scale velocity are
compared with total energy spectrum E(k) (obtained
using the full Burger’s model as in a DNS) in Fig. 5. It
is seen that in the region of resolved scales support a
resolved velocity energy spectrum E, (k) obtained with
TLS approach is relatively well matched with the total
DNS energy spectrum E(k). The small-scale spectra
in the TLS approach is also reasonably resolved. Note
that, unlike in classical LES where the resolved spec-
tra typically begins to deviate (decay) from the DNS
spectra as the cutoffi wavenumber is approached, in
the TLS approach, the resolved spectra show no such
decay. This is one of the unique features of the TLS
approach that is expected to play a major role in cap-
turing high Re turbulent flows.

4.2 High-Re Channel Flows

3D TLS of high-Re channel flows have been con-
ducted using a staggered grid technique.?® A third-
order low storage Runge-Kutta scheme was employed

9

Fig. 6 The ODT line arrangement in TLS Model.

for temporal discritization.?® This scheme is second-
order accurate and employs the standard Germano’s
dynamics subgrid model for the baseline LES ap-
proach. For TLS application, the SGS model is re-
moved and replaced by the terms described in the
TLS formulation. The small-scale field is also simu-
lated using the TLS 1D model described earlier. No
special treatment of the near-wall cell (i.e., coupling
with the near-wall ODT) is used in the present effort
since the primary goal of this study is to evaluate the
baseline TLS approach. Simulations for a Re = 595
{based on wall units) is performed in this initial effort
since DNS data! is available for comparison. A reso-
lution of 32x32x32 is employed for the resolved field
and the 1D ODT lines in the wall normal and peri-
odic directions employed a resolution of 528 and 128
points respectively. Since the resolved domain is very
coarse, the first grid point next to the wall is well out-
side the buffer layer (around y* = 30 and therefore,
the near-wall turbulent field is not expected to be cap-
tured in the resolved field. However, the small-scale
model is expected to capture some of this effect and
therefore, resolved field profiles outside the wall region
should evolve as if the near wall region is resolved. [As
described in the following section, the near-wall pro-
file can be captured quite accurately by the near-wall
ODT model which we plan to integrate within the TLS
formulation in the near future.]

The present simulation has not been carried out
for sufficiently long time (due to some unanticipated
delay in completing the computations) for detailed sta-
tistical analysis and furthermore, issues such as the
resolved and small scale grid resolution effects have not
yet been addressed. Therefore, the results reported be-
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Fig. 7 The snapshot of the resolved streamwise
velocity on two different wall-normal lines.

low (especially the higher moments) are not considered
as the final converged solution. However, the prelim-
inary results reported here demonstrate the potential
of the TLS method. Note that, unlike classical LES
SGS modeling; there are no adjustable “coefficient” or
constants to manipulate in the present formulation.

Typical profiles of the streamwise small-scale and
resolved velocities for two different wall normal lines
are shown in Figs.7 and 8. It can be seen that fluc-
tuations of the small-scale velocity is always of high
intensity in the near wall region. Despite the fact that
instantaneous small-scale profiles are not symmetric,
a time averaged profile of the small-scale velocity ex-
hibits clear symmetry, as shown in Fig.9. This shows
that the small-scale model has been implemented in a
consistent manner.

The mean profile of the total streamwise velocity
u'(z2) + u®(xzy) along the wall-normal coordinate is
shown in Fig.10. In general, the TLS profile is very
similar to the DNS results especially in the near wall
viscous sublayer region. However, away from the wall
the TLS profile shows a higher resolved velocity mag-
nitude. At present, reason for this not apparent, al-
though the limited run time data that was used for
this analysis could be a cause (the fact that the vis-
cous sublayer is in good agreement suggests this as a
possible explanation since the viscos region should con-
verge Taster than the log-layer). We will be addressing
this issue in the immediate future.

The rms total velocity profiles are plotted in wall
units in Fig.11. In-spite of the fact that spanwise and
wall-normal rms velocities are clearly underestimated,
the more important streamwise velocity rms demon-
strates the correct behavior in the near wall region.
Again, the limited data that is used for the present
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Fig. 8 The snapshot of the small-scale streamwise
velocity on two different wall-normal lines. Note
that one small-scale profile is shifted vertically from
zero line for visualization.
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Fig. 9 The time averaged (over a small period of
time) profile of the small-scale velocity on a one
line from Fig.8.

statistical analysis may be the reason for the fluctuat-
ing behavior observed in these profiles.

Clearly, far away from the wall, the rms profiles
should scale with outer coordinates, rather than y*.
These plots are shown in Fig.12 with respect to non-
dimensional wall normal direction y/d. Again, the
overall trends and relative magnitudes are consistent
with what is expected in high Re channel flows.

4.3 Near-Wall ODT Issues

As mentioned earlier, simulations are also carried
out in which the 1D ODT model was implemented
only in first LES cell next to the wall and the standard
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Fig. 11 Rms velocity profiles in wall units: solid

line (TLS), dashed line (DNS).

LES model (using the Germano’s dynamic model) is
used in the rest of the domain. This approach essen-
tially repeated the earlier study® using the staggered
grid solver described in the previous section. Since
the results were similar, they are not repeated here.
However, we briefly discuss some of the coupling is-
sues (noted earlier) that we hope to eliminate using
the TLS approach.

Figure 14 shows the turbulent fluctuation intensity
in the wall normal direction using the original near-
wall ODT formulation as described by Schmidt et al.®
and a version in which the coupling between the ODT
and LES was modified in the LES overlap region (see
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Fig. 12 Rums velocity profiles in wall units: solid
line (TLS), dashed line (DNS).
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Fig. 13 The ODT line arrangement in the near-
wall ODT Model.
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Fig. 14 Rms velocity profiles for two versions of
near-wall ODT Model.

Fig. 13). .

The DNS results are also shown for comparison. It
can be seen that the near wall ODT can capture the
viscous sublayer and the peak in the buffer layer rea-
sonably well and that the modifications to the ODT-
LES coupling can strongly effect the prediction near
the overlap region.

It is expected that when the near-wall ODT is cou-
pled within the TLS formulation, we will be able to
capture both near-wall and far-field behavior within
a single formulation. Note that the small-scale 1D
model used in the TLS approach is actually an ex-
tension of the near-wall ODT and therefore, coupling
of both these methods is not expected to be a major
hurdle.

5 Conclusions

A new TLS approach alternative to LES has been
developed based on the decomposition of velocity into
resolved and small-scale components. A coupled sys-
tem of the resolved and small-scale equation that is
not based on an eddy-viscosity type of assumption has
been derived and implemented to simulate very high-
Re wall-bounded turbulent flows as in a channel.

While our approach is intended for turbulent flows
governed by Navier-Stokes equations at high Reynolds
number, it is first demonstrated here for simpler case
of one dimensional randomly forced Burgers equation.
The small-scale velocity field can be relatively accurate
reconstructed by solving the small-scale equation (33).
A solution of this equation is strongly dependent on a
forcing term defined by mutual interaction of resolved
scales and insensitive to initial conditions imposed on
the small-scale velocity. Our numerical model of solv-
ing the coupled system of the resolved and small-scale
equations showed some predictive potential and can

1000

be easily generalized for three dimensional case of ho-
mogeneous turbulence which is a subject of future
research.

Preliminary study using a full 3D TLS model of the
more complex cases of inhomogeneous turbulent flows
governed by the Navier-Stokes equation has been also
carried out and some trends and behavior of the TLS
model has been discussed in this paper. Results sug-
gest that the baseline TLS model which requires no
adjustable parameters has the potential for capturing
turbulent flow behavior in high Re channel flows us-
ing very coarse grids (e.g., the resolved grid used for
TLS is only 32x32x32 for a Re, = 595 (whereas, a
384x257x384 grid resolution is needed for an equiva-
lent DNS). Further improvements of the TLS model -
near the wall is planned by using the near-wall ODT
model. The application of this combined TLS model to
very high Re flows will be reported in the near future.
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