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ABSTRACT

A two-phase subgrid combustion model has been
developed for large-eddy simulations (LES). This
approach includes a more fundamental treatment of the
effects of the final stages of droplet vaporization,
molecular diffusion, chemical reactions and small scale
turbulent mixing than other LES closure techniques.
As a result, Reynolds, Schmidt and Damkohler number
effects are explicitly included. This model has been
implemented within an Eulerian-Lagrangian two-phase
formulation. In this approach, the liquid droplets are
tracked using the Lagrangian approach up to a pre-
specified cut-off size. The evaporation of the droplets
larger than the cut-off size and the evaporation and
mixing of droplets smaller than the cut-off size are
modeled within the subgrid using an Eulerian two-
phase model. It is shown that droplets with order unity
Stokes number disperse more than small droplets in
agreement with earlier numerical and experimental
studies. Conventional and the present approach agree
very well when droplets do not fall below the cut-off.
However, the present approach gives consistently
better results when the cut-off is increased, thereby,
demonstrating an important advantage of the new
method. The limitations of the current methodology
are also highlighted and possible solutions are
discussed.

INTRODUCTION

Combustion efficiency, reduced emissions and
stable combustion in the lean limit are some of the
desirable features in the next generation gas turbine
engines. To achieve these capabilities, current research
is focusing on improving the liquid fuel atomization
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process and to increase fuel-air mixing downstream of
the fuel injector. However, the structure of complex
three-dimensional, fuel-air mixing layers is very
difficult to resolve using current experimental and
numerical methods. Since, fuel atomization and fuel-
air mixing are both highly unsteady, conventional
steady state methods cannot be used to elucidate the
finer details. On the other hand, although the unsteady
mixing process can be studied quite accurately using
direct numerical simulation (DNS) (e.g., Poinsot,
1996), the application of DNS is limited to low to
moderate Reynolds numbers (Re) due to resolution
requirements and therefore, cannot be used for high Re
flows of current interest.

In LES, the scales larger than the grid are
computed using a time- and space-accurate scheme,
while the unresolved smaller scales are modeled.
Closure of momentum and energy transport equations
can be achieved using a subgrid eddy viscosity model
since the small scales primarily provide a dissipative
mechanism for the energy transferred from the large
scales. However, for combustion to occur, the species
must first undergo mixing and come into molecular
contact. These processes occur at the small scales
which are not resolved in the conventional LES
approach. As a result, conventional subgrid eddy
diffusivity models cannot be used to model these
features.

To address these issues, recently (Menon et al.,
1993; Menon and Calhoon, 1996; Calhoon and Menon,
1996, 1997) a subgrid combustion model was
developed and implemented within the LES
formulation. This model separately and simultaneously
treats the physical processes of molecular diffusion and
small scale turbulent convective stirring. This is in
contrast to probability density function closure which
phenomenologically treats these two processes by a
single model, thereby removing experimentally
observed Schmidt number variations of the flow.
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The gas-phase methodology was recently
extended to two-phase flows (Menon and Pannala,
1997) to accurately capture the process of phase
change and wrbulent mixing. In the present paper, this
approach has been further refined and used to study
vaporization and the subsequent chemical reactions.
Both infinite and finite-rate kinetics have been
investigated and discussed in this paper.

FORMULATION

Both Eulerian and Lagrangian formulations have
been used to simulate two-phase flows in the past (e.g.,
Mostafa and Mongia, 1983). However, most state-of-
the-art codes employ the Lagrangian form to capture
the droplet dynamics, while the gas phase is computed
in the Eulerian form (e.g., Oefelein and Yang, 1996).
In this formulation, the droplets are tracked explicitly
using Lagrangian equations of motion, and heat and
mass transfer are computed for each droplet. Due to
resource constraints (computer time and memory),
only a limited range of droplet sizes are computed.
Droplets below an ad hoc cut-off size are assumed to
vaporize instantaneously and to become fully mixed in
the gas phase. This is a flawed assumption, since even
in pure gas flows small-scale mixing process is very
important for quantitative predictions (Menon and
Calhoon, 1996). Here, the gas-phase subgrid
combustion methodology has been extended to allow
proper simulation of the final stages of droplet
evaporation and turbulent mixing.

The two-phase subgrid process is implemented
within the framework of the Eulerian-Lagrangian LES
approach. Thus, droplets larger than the cut-off size are
tracked as in the usual Lagrangian approach. However,
once the droplets are smaller than the cut-off, a two-
phase subgrid Eulerian model is employed to include
the effects of the small droplets within the LES cells.

Gas Phase LES Equations

The incompressible Navier Stokes equations in the
zero Mach number limit are employed for the present
study. Zero-Mach number approach involves using a
series expansion in terms of Mach number to remove
the acoustic component from the equations and is a
well established method (McMurtry et al, 1989;
Chakravarthy and Menon, 1997).

The LES mass, momentum, energy and species
equations in the zero-Mach number limit are:
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The above system of equations is supplemented by
the equation of state for the thermodynamic
pressure p = pRT which can be used to obtain the
temperature T. Here, p,u and p are,
respectively, the density, i-th veloc1ty component, O -
th species mass fraction and the kinematic pressure.
Also, v,A, D and R are, respectively, the kinematic
viscosity, the thermal conductivity, the mass diffusion
(assumed constant and same for all species here, but
can be generalized) and the gas constant. In Eq. (4),
®, is the LES filtered species production/destruction
term. Also, in the above equations, source terms
ps Fs, Os, and S, represent the volume-averaged rate
of exchange of mass, momentum, energy and species
between the gas-phase and the liquid phase. These
terms are computed, as detailed elsewhere (Oefelein
and Yang, 1996; Faeth, 1983) and, therefore, omitted
here for brevity. Furthermore, note that Eq. (3) is the
equivalent energy equation in the zero-Mach number
limit. In the absence of heat release and no phase
change, this equation and Eq. (1) will be identical.

In the above equations, the subgrid stress tensor
T = (u,u j i ) and _ the  species-velocity
correlations S (Y U~ -Y, u) require modeling.
In the present LES approach the stress term T;; is
modeled as = 2v,S; where v, is the cddy
viscosity and Su is the resolved rate-of-strain tensor.
The subgrid eddy viscosity is obtained in terms of the
grid scale A and the subgrid kinetic energy,
k, = (wu;—uu;) as: v, = C, Jk,A. Here, k, is
obtained by solving a transport equation (e.g., Menon
and Kim, 1996). The coefficient C, in the eddy
viscosity model and the coefficients appearing in the

k, equation can be obtained using the dynamic
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procedure as described elsewhere (Menon and Kim,
1996).

Liguid-ph. tion

A Stochastic Separated Flow (SSF) formulation
(Faeth, 1983; Oefelein and Yang, 1996) is used to
track the droplets using Lagrangian equations of
motion. The general equations of spherical droplets
reduce to the following form (here, terms arising due to
static pressure gradient, virtual-mass, Besset force and
external body-forces are neglected for simplicity):

dx, .
_—p! .
2 = ©®)
du i 3 18
dl;’ = ZCDRep—:i'E(ui—upyi) (6)
p—p

where the droplet properties are denoted by subscript
p, d, is the droplet diameter and u; is the
instantaneous gas phase velocities computed at the

droplet location. This gas phase velocity field is
obtained using both the filtered LES velocity field
and the subgrid kinetic energy k’%° (as in the eddy
interaction model). The droplet Reynolds number is

. _dp 1/2
computed using: Re,=— [(uj—up, Yui~u, )]

and the drag coefficient is modeled by (Faeth, 1983):
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The conservation of the mass of the droplets
results is given by: dm,/dt = —m, where the mass
transfer rate for a droplet in a convective flow field is
given as:
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Here, Sc is the Schmidt number and the subscript
Re, = 0 indicates quiescent atmosphere when there is
no velocity difference between the gas and the liquid
phase. The mass transfer under this condition is given
as rp, _o = 2np,D;,d,In(1+By) . Here, p; and

D,,, are, respectively, the gas mixture density and the

mixture diffusion coefficient at the droplet surface
and By is the Spalding number which is given

as By = (Y, =Y., p)/(1-Y, ) . Here, Y, p is the

fuel mass fraction at the surface of the droplet and
computed using the procedure described in Chen and

Shuen (1993), while Y,  is the fuel mass fraction in

the ambient gas.

The heat transfer rate of the droplet (assuming
uniform temperature in the droplet) is given by the
following relation (Faeth, 1983):

drT, 2 ,
myCp g = hyndy(T=T,)=r,Ab, (9

The heat transfer coefficient for a droplet in a
convective flow field with mass transfer is modeled as

172, .1/3
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Here, Pr is the gas phase Prandtl number and the
heat transfer coefficient for quiescent medium is given

as hRep=0 = }"NuRep=0 /d, where the Nusselt
number is obtained from:
2in(1+ By)™
Nug, o = —-+ (11)
(1+B,)~ -1

N URe = 0 approaches a value of 2 in the case of

zero mass transfer and Le is the Lewis number. Only
droplets above a cut-off diameter are solved using the
above equations, while the droplets below the cut-off
diameter are modeled using Eulerian formulation
within the subgrid.

In summary, the present LES approach solves only
the momentum equations on the LES grid. Closure for
the subgrid stresses is achieved by using a localized
dynamic model for the subgrid kinetic energy.
Concurrently, the liquid phase equations are solved
using the Lagrangian technique. The range of droplet
sizes tracked depends on the computational constraints.
The gas phase LES velocity field and the subgrid
kinetic energy are used to estimate the instantaneous
gas velocity at the droplet location. This essentially
provides a coupling between the gas and liquid phase
momentum transport. The mass conservation and the
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gas phase scalar field equations are simulated in the
subgrid domain as discussed in the next section.

SUBGRID COMBUSTION MODELS

The principle difficulty in reacting LES
simulations is the proper modeling of the combustion
related terms involving temperature and species, for
example, the convective species fluxes such as Saj due
to subgrid fluctuations and the filtered species mass
production rate @, . Probability density function
methods when applied within LES either using
assumed shape or evolution equation may be used to
close @, and, in principle, any scalar correlations.
However, the treatment of molecular mixing and small
scale stirring using phenomenological models as in pdf
methods, have not been very successful in predicting
the mixing effects. Problems have also been noted
when the gradient diffusion model is used to
approximate the species transport terms.

The linear eddy mixing (LEM) model treats
separately molecular diffusion and turbulent mixing
processes at all relevant length scales of the flow. The
scalar fields are simulated within a 1D domain which,
in the context of LES, represents a 1D slice of the
subgrid flame brush. The subgrid model simulates only
the effect of the small unresolved scales on the scalar
fields while the larger resolved turbulent scales of the
flow are simulated by the LES equations. The subgrid
LEM has several advantages over conventional LES of
reacting flows. In addition to providing an accurate
treatment of the small-scale turbulent mixing and
molecular diffusion processes, this method avoids
gradient diffusion modeling of scalar transport. Thus,
both co- and counter-gradient diffusion can be
simulated. More details of this approach (which is
identical to the method used for gas phase LES) is
given elsewhere (Menon and Calhoon, 1996; Calhoon
and Menon, 1996, 1997) and therefore, avoided here.

The Linear-E ingle P |

In the baseline LEM model (e.g., Kerstein, 1989,
1992; Menon et al., 1993) the exact reaction-diffusion
equations are numerically solved using a finite-
difference scheme in the local subgrid 1D domain
using a grid fine enough to resolve the Kolmogorov
and/or the Batchelor microscales. Consequently, the
production rate @, can be obtained without any
modeling. Simultaneous to the deterministic evolution
of the reaction-diffusion processes, turbulent
convective stirring within the 1D domain is modeled
by a stochastic mapping process (Kerstein 1992). This
procedure models the effect of turbulent eddies on the

scalar fields and is implemented as an instantaneous
rearrangement of the scalar fields without changing the
magnitudes of the individual fluid elements, consistent
with the concept of turbulent stirring.

The implementation of the stirring process
requires (randomly) determining the eddy size ! from a
length scale pdf f(I) in the range N <[< !z, where
n is the Kolmogorov scale and [;p,, is the
characteristic subgrid length scale which is currently
assumed to be the local grid resolution A. A key
feature of this approach is that this range of scales is
determined from inertial range scaling as in 3D
turbulence for a given subgrid Reynolds number:
Reypy = Wlppy/v where, ' is obtained from k.
Thus, the range of eddy sizes and the stirring frequency
(or event time) incorporates the fact that the small
scales are 3D. This feature is one of the major reasons
for the past successes of LEM in gas phase diffusion
flame studies (Menon and Calhoon, 1996; Calhoon and
Menon, 1996, 1997).

T i - Two-Ph |

For two-phase flows, the LEM reaction-diffusion
equations have been modified to include two new
features: (a) the vaporization of the droplets tracked by
the Lagrangian method, and (b) the effects of droplets
below the cut-off so that the final stages of droplet
vaporization and mixing is included. However, some
changes are required since droplet vaporization will
change the subgrid mass of the gas (primarily the fuel).
Thus, in addition to the scalar reaction-diffusion
equations, the two-phase mass conservation equations
must be solved in the subgrid.

The droplets below the cutoff have been included
by assuming that the droplets act as a psuedo-fluid and
therefore, the overall effect of the droplets within each
LES cell can be modeled as a void fraction. This
approach is valid only when the droplets form only a
small fraction of the total volume. However, this is an
acceptable assumption here since all droplets larger
than the cut-off are still tracked using the Lagrangian
approach. The present Eulerian two-phase approach is
also preferred (in terms of accuracy) when compared to
the Lagrangian approach when the droplets are very
small and begin to behave more like a continuum fluid.

Mass conservation in both the phases in the LEM
is given by: p,@+p,(1-¢) = p,,, , Where subscript
g represents gas phase, ! the liquid phase and @ is the
volume fraction of the gas phase (1 - void fraction of
the liquid (A)). The void fraction A or ¢ evolve during
the subgrid evolution. Although, the liquid density is a
constant, the gas density p, changes and needs to be
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determined. The equations in the LEM are:

9P, ¢

—E =5+, (12)
9(1-9)p
_T_I =5-5, (13)

Here, the source term S, is the contribution of the
supergrid to the subgrid liquid phase when the droplet
size falls below the cutoff. §; is due to vaporization of
the droplets tracked in the supergrid, while S,
represents vaporization of liquid in the subgrid.

The gas phase species equation for any scalar mass
fraction (W) in the subgrid can be written as

PPV _ Daz(ng)
ot Js?
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Here, “s” indicates the 1D domain of LEM. Also,

Sy is the source term (only in the fuel species
equation) for production due to vaporization of the
liquid phase. An equation for temperature must also be
solved with the above equations since vaporization
requires heat absorption and is followed by a drop in
temperature. This is quite similar to the method used in
the earlier gas phase studies of heat release effect
(Calhoon and Menon, 1997).

Note that, in Equations (12-14) the convective
terms are missing. This is consistent with the LEM
approach, whereby, the convection of the scalar fields
is modeled using the small-scale turbulent stirring and
by the splicing process (briefly described below) as
noted earlier (Menon et al., 1993a).

rid implementation of LEM

Since the filtered species Y, is calculated directly
by filtering the subgrid Y, fields, there is no need to
solve the LES filtered equations (i.e., Eq. 4).
Consequently, use of conventional (gradient diffusion)
models is avoided. However, since the Y, subgrid
fields are also influenced by large scale convection
(due to the velocity field u; and the subgrid turbulent
fluctuation estimated from k), additional coupling
processes are required.

The convection of the scalar fields by the LES
field across LES cell faces is modeled by a “splicing”
algorithm (Menon et al., 1993; Menon and Calhoon,

1996; Calhoon and Menon, 1996). Details of this
process are given in the cited references. Given the
initial subgrid scalar fields and void fraction, droplet
vaporization, reaction-diffusion, turbulent stirring, and
large scale convection processes are implemented as
discrete events. The epochs of these processes are
determined by their respective time scales. This type of
discrete implementation is similar to the fractional step
method used to solve the differential equations.

The splicing algorithm transports subgrid fluid
elements from one LES cell to another based on the
local velocity field. The local velocity consists of the
resolved velocity u; plus a fluctuating component
(estimated from the subgrid kinetic energy). The
splicing events are implemented discretely on the
convective time scale. Each splicing event involves (1)
the determination of volume transfer between adjacent
LES grid cells, (2) the identification of the subgrid
elements to be transferred, and (3) the actual transport
of the identified fluid elements. The underlying
rationale for this procedure has been discussed
elsewhere (Calhoon and Menon, 1996). The same
algorithm is used here except that now both the scalar
fields and the void fraction are spliced at the same time.

An important property of the splicing algorithm is
that the species convection is treated as in Lagrangian
schemes. Thus, convection is independent of the
magnitude or gradient of the species which are
transported and depends only on the velocity field.
This property allows this algorithm to avoid false
diffusion associated with numerical approximation of
convective terms in differential equations. By avoiding
both numerical and gradient diffusion, the splicing
algorithm allows an accurate picture of the small scale
effects of molecular diffusion to be captured, including
differential diffusion effects.

RESULTS AND DISCUSSION

The two-phase subgrid model has been
implemented into a 3D zero-Mach number code
developed earlier (Chakravarthy and Menon, 1997).
Briefly, this code solves the LES equations on a non-
staggered grid. Time integration is achieved using a
two-step semi-implicit fractional step method that is
second-order accurate. The spatial difference scheme is
fifth-order for the convective terms and fourth-order
for the viscous term. The Poisson equation for pressure
is solved numerically using a second-order accurate
elliptic solver that uses a four-level multigrid scheme
to converge the solution. The Lagrangian tracking of
the droplets is carried out using a fourth-order Runge-
Kutta scheme.

Before simulating reacting flows, an attempt was
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made to validate the Lagrangian approach of particle
tracking. Although quantitative comparison with
earlier studies is difficult due to differences in the set
up and/or initial conditions, qualitative comparison can
be carried out. For this purpose we simulated the
mixing layer studied by Lazaro and Lasheras (1992a,b)
and simulated by Martin and Meiburg (1994) using a
2D vortex method. Here, we employed a 3D approach
and simulated a temporal mixing layer on a 32x32x32
grid. The particles were injected in every cell of the
upper stream with velocities equal to the local cell
values. The total number of particles tracked is 13,500.
This case is very similar (except for the high resolution
both in grid and number of particles) to the direct
simulation of Martin and Meiburg (1994). Using the
0.9-0.1 level thickness (Lazaro and Lasheras, 1992b),
particle dispersion was computed for a range of Stokes
numbers. Here, Stokes number is defined as:
St = (ppdf,/ISu)AU/Sm, where 3, is the vorticity
thickness and AU is the velocity difference between
the upper and lower stream. Also, the 0.9-0.1 level
thickness (8;) is the difference between the cross-
stream locations where the particle concentrations are
90% and 10% of the reference value, respectively.

Figure 1a shows the dispersion of particles (in
terms of the dispersion thickness) with time for a range
of Stokes numbers. It can be seen that particles of
order Sr=1 exceeds that of droplets with St<! (i.e.,
smaller droplets). This phenomena was observed
earlier in both experimental (Lazaro and Lasheras,
1992b) and numerical (Martin and Meiburg, 1994)
studies and was attributed to the increased lateral
dispersion of the particles when the aerodynamic
response time is of the order of the characteristic flow
time. The present result agrees with this result. The
increased particle dispersion leads to the formation of
streaks for particles for Str=2.5 as shown in Fig. 1b.
These results also agree with earlier observations.

In the following, the discussion focuses primarily
on comparing the subgrid model with the conventional
model. For these studies, droplets were injected into
the core of the mixing layer at time t=0. The mixing
layer is initialized by a tangent hyperbolic mean
velocity along with the most unstable 2D (of
dimensional wavelength 27n) mode and random
turbulence (similar to that described in Metcalfe et al.,
1987). Results shown here employed a grid resolution
of 32x32x32. Grid independence studies were also
carried out for some of these cases using a 64x64x64
grid and good agreement was obtained.

The mixing layer is initialized with the oxidizer in
both the upper and lower streams at 350 K and the fuel
droplets are initially introduced in the mid-plane. A
range of droplets from 10-50 micron radius with an

initial temperature of 300 K was used for all
simulations with the droplet cut-off radius at 5 micron.
A total of 2100 droplet groups were tracked (the effect
of varying the droplet group has not yet been carried
out). For simplicity, the droplet groups were uniformly
distributed and the number of droplets in each group is
chosen such that the overall mass loading is 0.5 and the
corresponding volume loading is 0.0005.

Figure 2a shows the spanwise vorticity contours in
the mixing layer at the roll-up stage for a case in which
the particles are passively transported upon insertion
(i.e., no vaporization included and hence, there is no
coupling between the two phases). It can be seen that
the shear layer rolls into coherent structures as seen in
pure gas phase flows. However, when droplet
vaporization is included, as shown in Fig. 2b, the
associated heat absorption results in major changes in
the shear layer. The formation of the coherent
spanwise vortices is inhibited due to vaporization (and
mass addition to gas phase). Although the extent of the
mixing layer appears to be large, the peak value of the
spanwise vorticity is substantially lower for the
vaporizing case. Analysis shows that, in the
vaporization case, significant 3D vorticity is generated
and this plays a major role in the inhibiting the
spanwise coherence.

The enhancement of streamwise vorticity can be
visualized by comparing Figs. 3a and 3b which show,
respectively, the streamwise vorticity for the passive
and vaporization cases. The 3D nature of the shear
layer has been enhanced in the vaporization case
(notice that the same contour interval is employed for
direct comparison). Further analysis shows that
vaporization causes significant production of the
baroclinic torque (the spanwise component of the
baroclinic torque, VpXVp/ p2 is shown in Fig. 4a)
outside the vortex core. This production plays a major
role in redistributing the vorticity in the mixing layer.
This can be confirmed by calculating the various terms
in the 3D vorticity transport equation. For example, the
expansion term ®(V e ) in vorticity equation is
shown in Fig. 4b. Comparison with Fig. 4a indicates
that baroclinic term dominates in this case.
Interestingly, this behavior is quite similar to the case
when heat is released (McMurtry et al., 1989) except
that, in the present case, heat is absorbed and the
temperature is decreasing.

The droplet distribution for the above two cases is
shown in Figs. 5a and Sb, respectively. The Stokes
number for all the droplets tracked is in the range of
0.0004-0.01. As expected, the droplets follow the fluid
motion and this behavior qualitatively agrees with the
results obtained by Ling et al. (1997). Differences exist
due to modulation of the vortex structures as a result of
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vaporization (as noted above).

LES using the new subgrid model were then
compared to identical conventional LES. For these
studies, a subgrid resolution that captured the effect of
turbulent stirring by the largest small scales (here, for
simplicity, a subgrid eddy size 60% of the grid
resolution is used), was used to reduce the
computational cost. Subgrid resolution was doubled
and similar results were obtained indicating that the
present tests captures the effect of the largest subgrid
scales quite accurately.

The spanwise and streamwise vorticity for the
conventional and subgrid approach are shown in Figs.
6a and 6b, respectively, and correspond to Figs. 2b and
3b for the conventional case. The effect of vaporization
on shear layer is qualitatively similar in nature but the
magnitude is much higher for the subgrid approach.
This can be explained by noting that in the LEM
approach phase change occurs in the subgrid.
Similarity in the droplet distribution is more apparent
and can be observed by comparing Figs. 6¢c and 5b.
However, this is not too surprising since the larger
droplets are still tracked using the Lagrangian method
in both the LES.

Note that, in the subgrid case, if the droplet cut-off
is chosen such that no droplet drops below the cut-off,
then the void fraction is zero. In this case, the subgrid
and the conventional approaches should agree
reasonably well. This has been confirmed using infinite
kinetics when the vaporized fuel mixes with the
oxidizer and reacts. The product mass fraction
predicted by the conventional and the Subgrid
approaches are compared in Fig. 7a. It can be seen that
there is very good agreement thereby confirming the
validity of the subgrid approach. The predicted
temperature of the gas phase (Fig. 7b) also shows good
agreement.

If the cut-off size is large, then it is expected that
the conventional LES will be in significant error since
it assumes that all droplets below cut-off
instantaneously vaporize. However, if the new subgrid
approach can deal with this increased cut-off size (by
the subgrid void fraction approach) then it will reduce
the computational cost of the Lagrangian tracking
considerably. To determine this, two cut-off sizes of 10
and 20 microns were used in otherwise identical
simulations. Since the droplet distribution is lost once
the drops are in the subgrid, it is assumed that all the
droplets are at the average diameter between the cut-
off and zero. This is not an accurate assumption and in
the future, droplet distribution information will be
carried to the subgrid. Another source of error is that,
currently, the liquid void fraction is passively
transported across LES cells based on the volume

transfer of the gas phase. However, the liquid phase
transport should be based on the liquid volume transfer
from the LES cell. A method to deal with this transport
has been developed and will be used in future studies.

The product mass fraction obtained by the two
different LES methods is compared in Fig. 8 for the
various cut-off sizes. The results predicted by the
conventional LES are in gross error for cut-off radius
of 10 and 20 micron. However, the present
methodology captures most of the trends and
magnitudes. Ideally, the subgrid model should predict
identical results for a range of cut-off sizes. The
observed differences in the magnitude and the spread
are due to the lower vaporization rates in the core
region. Analysis shows that this is primarily due to
above noted problem with the LES transport of the
liquid phase. It is expected that the correction
developed for this will result in more consistent
predictions.

Finite rate cases for three different Damkohler
numbers (Da) were also simulated. The product mass
fractions for different Da are shown in Fig. 9a and the
temperatures are compared in Fig. 9b. When the
chemical time scale decreases (Da increases), the
product mass fraction increases in agreement with
earlier results and physics. Due to finite-rate effects,
there is a considerable amount of unreacted fuel in the
gaseous form. In addition to the droplet temperature
and the surrounding oxidizer concentration, the amount
of fuel present in the gaseous form dictates the liquid
to gaseous fuel phase change. Thus, the vaporization
rate is coupled to the rate of chemical kinetics, heat
release and the other processes such as convection. The
demonstration that the present method can capture Da-
effects needs to be reevaluated in the presence of heat
release. Furthermore, since the present method can
deal with differential diffusion, Lewis number effects
can also be captured. This will be demonstrated in the
near future.

CONCLUSIONS

In this study, an earlier developed gas phase
subgrid combustion model has been extended for two-
phase flows. This approach includes a more
fundamental treatment of the effects of the final stages
of droplet vaporization, molecular diffusion, chemical
reactions and small scale turbulent stirring than other
LES closure techniques. As a result, Reynolds, Lewis
and Damkohler number effects are explicitly included.
This model has been implemented within an Eulerian-
Lagrangian two phase large-eddy simulation (LES)
formulation. In this approach, the liquid droplets are
tracked using the Lagrangian approach up to a pre-
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specified cut-off size. However, the vaporization of the
Lagrangian droplets and the evaporation and mixing of
the droplets smailer than the cut-off size are modeled
within the subgrid using an Eulerian two-phase model
that is an extension of the earlier gas-phase subgrid
model. The issues (both resolved and unresolved)
related to the implementation of this subgrid model
within the LES are discussed in this paper.

The present results on the increased dispersion of
non-vaporizing droplets at intermediate sizes in forced
mixing layers agrees well with trends seen in earlier
experimental and numerical  studies. When
vaporization was included, modifications of the vortex
structure was found to be due to the production of
baroclinic torque. This result is quite similar to the heat
release effect seen earlier. The effect of varying the
Damkohler number was also captured -correctly.
Finally, it has been shown that when the droplet cut-off
size is increased, the conventional method gives
erroneous results while the current methodology
captures most of the trends within the limitation of the
current implementation.
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Figure 4a) Instantaneous value of spanwise component of the
baroclinic term in vorticity equation in mid-span plane.
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Figure 6a) Spanwise vorticity in the mixing layer with cou-
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Figure 4b) Instantaneous value of spanwise component of the
expansion term in vorticity equation in mid-span plane.
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Figure 5b) Projection of the droplet distribution in the X-Y
plane with coupling from liquid phase (Conventional LES).

Figure 6b) Streamwise vorticity in the mixing layer with cou-
pling from liquid phase (LES/LEM).
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plane with coupling from liquid phase (LES/LEM).
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Figure 7b) Variation of X-Z plane averaged temperature

across the mixing layer for infinite rate.

Figure 7a) Variation of X-Z plane averaged product mass

fraction across the mixing layer for infinite rate.

Figure 8) Variation of X-Z plane averaged product density
across the mixing layer for different cut-offs.
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Figure 9a) Variation of X-Z plane averaged product mass frac-
tion across the mixing layer for different Damkohler numbers.

Figure 9b) Variation of X-Z plane averaged temperature
across the mixing layer for different Damkohler numbers.
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