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Abstract 
A Kinetic-Eddy Simulation (KES) approach has been developed for 

large-eddy simulation (LES) of wall-bounded turbulent flow at high 
Reynolds numbers. The model solves for the local unresolved kinetic energy 
and the local subgrid length scale. The dissipation of the kinetic energy 
depends on the length scale, as well as on the length scale gradient. In most 
of flow domain of simulated cases, the subgrid length scale is of the order of 
the computational grid scale, and the KES approach behaves like a LES. In 
some other regions the length scale tends toward the integral scale and thus, 
smoothly approaches the very large-eddy simulation (VLES) limit. A robust 
KES approach is demonstrated here that employs the realizability 
constraints to bound the model parameters. The realizable KES has been 
applied to static stall around a 3D NACA0015 wing, oscillatory attached and 
dynamic light stall, and dynamic deep stall flows around a 2D NACA0015 
airfoil. Vortex shedding and massive separation of the boundary layer at 
high Reynolds number are clearly captured. The behavior of the realizable 
KES approach on high angle-of-attack aerodynamics is studied. 

 
 

I.  Introduction 

Dynamic stall is an important phenomenon in rotorcraft aerodynamics and is the result of 
airfoils/wings pitching with a maximum angle of attack (AoA) greater than the static-stall angle. 
It has challenged aerodynamicists for many years to accurately understand the physics behind 
dynamic stall. There have been many numerical simulations of this problem. However past 
predictions using RANS model are not satisfactory and may introduce some uncertainties in the 
prediction of rotorcraft aerodynamics (Sankar, et al., 2002). It is well understood that the dynamic 
effects are more closely associated with the detachment and the reattachment of turbulent vortices 
on the pitching airfoils/wings, and the subsequent vortex motion in the wake region. The 
phenomenon is characterized by a massive separation at high Reynolds number and by the 
formation of large-scale vortical structures. As a result, the maximum values of lift, drag, and 
pitching moment highly exceed their static values. 

The flow around airfoils/wings at large angles of attack is complicated. It includes 
adverse pressure gradient, streamline curvature, boundary layer separation, and transition from 
laminar to turbulent flow. There is also a singularity at the flow stagnation point around the airfoil 
leading edge (LE). The flow is sensitive to the airfoil geometry, angle of attack, and Reynolds 
number. Because of the strong coupling between the trailing edge (TE) separation and the 
pressure peak at the leading edge, all the regions around the airfoil are equally important. 
However, few existing models have the capability to model all the flow regions with equal 
accuracy. 
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The massively separated flow associated with dynamic stall is highly unsteady away from 
the wall. The Reynolds-Averaged Navier-Stokes (RANS) approaches, which are designed to 
solve the steady state, time-averaged flows, are not expected to predict this kind of turbulent flow 
well. Direct numerical simulation (DNS) would of course be the ideal method, if computational 
resource is available. Large-Eddy Simulaiton (LES) is the current choice, which is an 
intermediate technique between DNS and RANS. In LES, the contribution of the large, energy-
containing structures and all scales larger than the grid resolution to momentum and energy 
transfer is computed exactly, and only the effect of unresolved small scales is modeled. Similar to 
DNS, LES maintains spatial and temporal accuracy of the resolved scales. However, LES is still 
extremely expensive, requiring fairly fine meshes especially in the near-wall region. In a wall-
resolved LES, the distance from the wall to the first grid should be at least less than two wall 
units ( 21 <+y ), in order to resolve the instantaneous velocity gradient close to the wall and capture 
the near wall structures sufficiently (Piomelli and Chasnov, 1996). Thus, it is apparent that even a 
pure LES is nearly beyond current computer capacity for resolving wall turbulence at high 
Reynolds numbers. As a tradeoff in between, a class of hybrid RANS-LES methods has been 
proposed to alleviate the LES near-wall resolution requirement. In the hybrid methods, a RANS 
model is employed in the near-wall region, and LES closure is used away from it. Among them, 
detached eddy simulation (DES) (Spalart et al., 1997; Squires, 2004) and other zonal approaches 
(Martin, et al., 2006) have shown some impressive results for complex aerodynamic applications. 
But there is usually an explicit specification of a distance to the wall or a blending function to 
couple the RANS and LES method, which may introduce significant grid dependency into the 
simulation. Partially averaged Navier-Stokes (PANS) method, based on k-ε (Girimaji and Abdol-
Hamid, 2005) or k-ω (Lakshmipathy and Girimaji, 2006), has been recently proposed as a hybrid 
method and the results are encouraging. 

Kinetic-Eddy Simulation (KES) approach (Fang and Menon, 2006) has been recently 
proposed for LES simulation of high Reynolds number turbulent flows. KES is a two-equation 
subgrid model, which solves for the subgrid kinetic energy and the subgrid length scales locally. 
In principle, KES becomes very large-eddy simulation (VLES) when only large scales of 
turbulence are resolved with very coarse grid; LES when scales close to grid scale are resolved; 
and direct numerical simulation (DNS) in the limit of very fine grid, i.e., the subgrid length scale 
and subgrid kinetic energy tend to vanish. KES is applicable to near-wall turbulence without any 
ad-hoc distance from the wall specification or viscous damping. This model has been applied, in 
the past, to 2D flows around a NACA-0015 airfoil at various AoAs, with good agreement with 
experimental measurement. 

In this study, the KES approach is more generalized for 3D flows and made more robust 
by applying the realizability constraints (Schumann, 1977; Vremann, et al., 1994) on the subgrid 
closure. KES with realizability constraint is used here to simulate 3D static stall around a 
NACA0015 wing and dynamic stall around a NACA0015 airfoil. The numerical results have 
been compared with available experimental, and good agreement is observed. In Section 2, the 
KES subgrid model will be presented briefly. The application of the realizability constraint is 
discussed in Section 3. The numerical implementation of the model is described in Section 4, and 
the KES results are given in Section 5. We conclude and discuss future work in Section 6. 
 
 

II.  KES Subgrid Model 

The detailed development of KES model has been described in a previous work (Fang 
and Menon, 2006). In this section, KES model will be briefly introduced to establish the 
methodology developed in this work for completeness. 

Filtered Navier-Stokes Equations 
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The equations governing the motion of the resolved eddies can be obtained by separating 
the large scales from the small scales. LES equations are obtained using a Favre (density-
weighted) spatial filtering of the unsteady, compressible Navier-Stokes equations. A filtered 
variable is defined as ρρ /

~
ff = . Applying the filtering operation, the resolved transport 

equations of mass, momentum, and energy can be obtained in a conservative form as 
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where ρ is the density, iu is the velocity in the ix direction, p  is the pressure, and E ( 2
2
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is the total energy per unit mass. The filtered total energy is defined as sgs
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2
1 ~~~ , which 

includes the subgrid kinetic energy )~~( iiii
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1 . Here, the overhead symbol “↔” 
represents the Favre filtering. The resolved molecular viscous stress and heat fluxes are given by 
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µ  and κ are the molecular viscosity and the thermal conductivity at the filtered temperature T~ , 
respectively. The subgrid terms that require closure are: 
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Subgrid Shear Closure 
The subgrid stress tensor sgs

ijτ is modeled using an eddy viscosity model (EVM) as, 
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where the subgrid eddy viscosity tν  is proportional to the product of the subgrid velocity scale, 
sgsk , and the subgrid length scale, sgsl , defined as, 

sgssgs
t lkCνν =        (10) 

In the KES approach, sgsk  and sgsl  are obtained by solving the following sgsk - and sgskl)( -
transport equations: 
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Here, the dissipation coefficient of sgskl)(  is a function of subgrid length gradient given as (Fang 
and Menon, 2006) 
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The coefficient Pr  is laminar Prandtl number, taken to be 0.72. The dissipation coefficient of 
subgrid sgsk  is 9160., =kCε , and the Prandtl-Schmidt number for subgrid sgsk is 90.=kσ . 

06670.=νC  is the eddy viscosity coefficient. The same coefficients, kC ,ε , kσ  and νC , were 
employed in k-equation LES simulations by Chakravarthy and Menon (2001). The production 
coefficient of subgrid sgskl)(  is 061.=lC , which has been obtained by combining the production 
of turbulent energy and the production of turbulent energy dissipation. The Prandtl-Schmidt 
number for subgrid sgskl)( 2=klσ . The coefficients, νC  and kC ,ε , can be obtained as a part of the 
solution by using a local dynamic kinetic model (LDKM), as shown in earlier literatures (Kim 
and Menon, 1999; Nelson and Menon,1997), which is in progress and will be reported in the 
future. 

Here, the length scale, sgsl , is a natural scale to bridge LES with DNS and VLES. 
Theoretically, when the length scale, sgsl , is close to the computational grid size ∆ , it approaches 
LES; when the computational grid size ∆  becomes as small as the Kolmogrov length scale η, the 
subgrid length scale sgsl  should vanish in the limit of DNS; when the length scale, sgsl , becomes 
much larger than ∆ , then it approaches the integral length scale and KES becomes very large-
eddy simulation (VLES). These limiting features still need to be proven further and full 
evaluation of the KES approach is planned in the near future to properly validate and establish 
this methodology. Also note that since sgsl  is a continuous function, there will be regions where 
this model will predict neither LES nor VLES. The performance of KES in this intermediate 
region is of particular interest in this study. 

Subgrid Energy Transport Closure 
In addition to the closure for sgs

ijτ  of equation (7), there are other unclosed terms 
appearing the LES filtered energy equation. In this work, SGS heat conduction sgs

iq  is ignored, 
and SGS total energy sgs

iE , SGS pressure diffusion sgs
iP , and SGS viscous work sgs

iσ are 
explicitly closed as, 
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where eσ  and pσ  are the effective subgrid Prandtl-Schmidt numbers for energy and pressure, 
respectively. At present they are taken as kσ  (=0.9). 
 
 

III.  Realizability Constraints 

As mentioned above, the turbulent stresses are not computed explicitly in the eddy 
viscosity model (EVM) of KES. Eddy viscosity is calculated from the turbulent kinetic energy, 

sgsk , and length scale, sgsl . If they are not controlled in the EVM calculation, negative values of 
sgsk  and sgsl  may occur resulting in numerical instability. By setting proper limiters on sgsk  and 

sgsl , negative values can be avoided without changing the flow solutions. These limiters can be 
obtained from the realizability constraints. 
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The realizability constraints of LES (Vremann, et al., 1994; Nelson and Menon, 1998) 
are 

0≥sgs
αα

τ ,        (17a) 
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where the summation convention is not applied to the subscript index α  and β , with 321 ,,=α  
and 321 ,,=β . Equation (17a) requires that the trace of the model SGS shear is nonnegative and 
equation (17b) states that the cross-correlation between the velocity components is bounded by 
the magnitude of autocorrelations. 
 Equation (17a) implies that 

0332211 ≥++ sgssgssgs τττ .     (18) 
When equation (9) is substituted into this equation, 0≥sgskρ . Considering that the filtered density 
is always positive, it can be concluded that 
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Substituting equation (9) into this equation gives 
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Note that here 332211 SSSSkk
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 The terms inside the first set of parentheses in the right-hand-side of equation (22) can be 
rewritten as, 

( )2
33

2
22

2
11

2
332233112211 2

1
2
1 SSSSSSSSSS kk

~~~~~~~~~~
++−=++     (23) 

Substituting equation (23) into equation (22) finally fields, 
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Here the operation of summation convention is applied to the subscript indices, jiijSS ~~  is the 
magnitude square of the mean strain rate. In the derivation, an assumption of positive filter (top-
hat and Gaussian) is employed, and the eddy viscosity tν  is always positive. This equality 
presents another lower bound for the turbulent kinetic energy sgsk . It can be seen that equation 
(24) implies equation (19), and the realizability constraints of equation (17b) is stricter than 
equation (17a). Equation (17c) is equal to equation (17b) in a two dimensional problem. But the 
constraint of equation (17c) is generally stricter than equation (17b) in three dimensions, which 
gives a bigger value of the lower bound for sgsk  in equation (24). The analytical analysis of 
equation (17c) is much more difficult. In this work the constraint coefficient is taken 1=αC . The 
lower bound for sgsk  provides realizable information on the isotropic part of the turbulent stress 
in equation (9). This is of particular interest in a compressible kinetic-eddy simulation. 

Substituting equation (9) into equation (24) yields, 
),min( lim,ννν CCC =       (25) 

where 
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Equation (25) adjusts the eddy viscosity and kinetic energy production based on this ratio of 
turbulent time scale when the turbulent time scale, sgst , is over-predicted in flow region where 
strong velocity gradients exist. Equation (25) is used in equations (11-12). Similarly, Durbin 
(1996) proposed a similar limiter for incompressible flow to suppress the overproduced 
production in the region near a stagnation point, known as the stagnation point anomaly. The 
equation (24) should be applied to sgskl)( -equation (12) to set constraint on sgsl also. Substituting 
equation (9) into equation (24) also gives, 
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As will be shown in the results, the limiters of equations (25-26) make the KES approach more 
generalized and more robust in simulations of high Reynolds number turbulent flows. 
 
 

IV.  Numerical Approach 

The LES filtered equations along with the KES subgrid model equations (11-12) are 
integrated by a dual time-stepping procedure (Jameson, 1991) and discretized by the finite 
volume method (FVM) in this work. A second-order accurate, three-point backward differencing 
is used in the physical time discretization, and the modified five-stage Runge-Kutta scheme 
(Jameson, et al., 1981; Jameson, 1991) is implemented for the pseudo-time evolution of solutions 
between the physical time steps. A cell-centered second-order scheme is applied in the space 
discretization. In order to eliminate spurious fluctuations, the second- and fourth-order Jameson 
artificial dissipations (Jameson, 1991), based on pressure gradient, are applied. The viscous 
coefficients of 1/4 and 1/256 are employed for the second- and fourth-order dissipation. 

The far-field characteristic boundary condition (Jameson, 1985) is specified at the outer 
boundary of the C-grid by computing one dimensional Riemann invariants. At the outflow 
boundary, zero gradient condition is generally applied for the flow variables. On the wall, 
conditions of no-slip velocity and adiabatic wall temperature are used, zero normal-gradient of 
pressure and density are employed with the first-order extrapolation. On a moving wall, a normal 
gradient condition is applied to pressure as follows, 

an ⋅−=
∂
∂ ρ
n
p ,      (27) 

where n is the unit vector of wall in normal direction, and a the velocity acceleration vector of 
moving wall. Periodic boundary conditions are applied in the spanwise direction. 

Both of sgsk  and sgsl are set to zero on the wall. Wall function conditions can be avoided 
if computational grid solution is very fine ( 11 <+y ) near the wall. Based on the analyses of energy 
dissipation rate on the wall, the following values are imposed on the first cells above the surface, 

( ) 1
50

1250 yuuk ii
sgs /~~. .ν=      (28) 

)./( ν5302
1ykl sgssgs =      (29) 
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where 1y  is the grid length scale of the first cells in the wall normal direction, and ν  the 
kinematic viscosity. This set of condition, equations (28) and (29), has been tested for 51 <+y  in 
this work. sgsk  is set to 20160 ).( ∞u  and sgsl  is set to the local grid length scale ∆  at far field. They 
are initialized with the same corresponding conditions also. 

An efficient parallel version of the solver has been developed, based the Message-Passing 
Interface (MPI) library. For the parallelization and complex geometry applications, the 
computational domain is split into multi-blocks, and each block is decomposed into zones. Each 
zone is enclosed with up to three layers of ghost cells. The ghost cells store flow variables 
transferred from the neighboring zone as numerical boundary condition. 
 
 

V.  Numerical Results and Discussion 

In the section, the realizable KES model has been applied to simulate the flows around a 
NACA-0015 airfoil/wing for 3D static stalls and 2D dynamic stalls. Numerical results are 
presented in comparison with experimental data (Piziali, 1994). In the experiment, the data for an 
oscillating NACA-0015 wing was obtained in a 7×10 foot wind tunnel at the NASA Ames 
Research center. The flow conditions of the experiment are as follows: free stream Mach number 

290.=∞M , Reynolds number 610951 ×= .Re  based on the free stream velocity ∞U  and airfoil 
chord C. 

In numerical simulations, Multiblock C-grid is used for the space discretization, as shown 
in Figure 1. The distance to the outer boundary is 8C. The normal distance from the first grid to 
the wall is Cy 5

1 101 −×=∆ , with 51 <+y . In 2D simulations, the spanwise length is Cz 00120.= , 
the grid size is 541×97×2, which includes 391 points around the airfoil and 75 points in the wake, 
and 2 points in spanwise direction. In 3D simulation of wings, the spanwise length is Cz 080.=  
with 21 points, and the other geometry and grid size are the same as those in 2D simulations. For 
the static airfoil/wing, angles of attack in the linear-lift and stall regime are simulated. For the 
oscillating airfoil, the instantaneous location of the airfoil surface is obtained from the pitching 
motion described in equation (30), 

)sin( tωααα 10 +=      (30) 
where CkU /∞= 2ω  is the angle frequency of pitching, k the reduced frequency, 0α  the mean 
angle of attack in pitching, and 1α  the amplitude of the sinusoidal oscillation. Three pitching 
cases are simulated: attached flow with o40 =α , o241 .=α  and 10.=k ; dynamic light stall with 

o88100 .=α , o2241 .=α  and 10.=k ; dynamic deep stall with o03130 .=α , o2551 .=α  and 10.=k . 
 

Validation of Realizability Constraints 
 The realizability constraint of equations 17(a-c) is checked in the simulation of 2D AoA 

o13  and 3D AoA o16 . In the case of 2D AoA o13  the realizability constraint is violated at less 
than four percent of grid points, while less than two percent in the case of 3D AoA o16 . This is 
attributed the coarse grid resolution in the region where strong shear exists. Numerical adjustment 
is necessary for νC  with equation (25) and for sgsl  with equation (26). 

Previous 2D cases of AoA o13  and o16  (Fang and Menon, 2006) are re-computed with 
current realizable KES. There is not significant difference in the aerodynamics solution of 
pressure, lift, drag, and moment coefficient or the flow solution of velocity field, except the 
subgrid length scale. Figure 2 shows the realizable KES results for an instantaneous length scale 
around the NACA0015 airfoil at AoA= o13 , with respect to the ratio of subgrid length scale to 
grid scale and pure subgrid length scale, respectively, in Figure 2(a) and 2(b). Similar results are 
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shown in Figure 3 for the simulation of AoA= o16 . In both of the cases simulated, there is not 
stagnation-point singularity for the computed length scale as reported in the literature of k-ε 
model (Durbin, 1996). In Figures 2(a) and 3(a), the green region represents that the subgrid length 
scale is in the order of grid scale, and we say that the KES works as a LES model. The red region 
represents that the subgrid length scale is much greater than the grid scale, approaching the limit 
of integral length scale, and we say the KES works as a VLES model. In the very small region 
with blue color, the subgrid length scale is smaller than the grid scale, and the KES behaves as a 
DNS method. More details on the time-dependent behavior of KES will be presented in the 
following 3D simulations. 
 

3D Static stall: 

The KES solutions of the flow around a NACA0015 airfoil at different angles of attack 
were reported in previous work (Fang and Menon, 2006). The flow is stalled with massive 
separation and has a strong character of unsteadiness at AoA 16o. It has been a big challenge to 
capture such unsteady physics with regular RANS models. KES is a VLES/LES model that is 
time accurate and should capture these unsteady features. In this work, 3D simulations around the 
NACA0015 wing at AoA o16  are performed to study the detailed behavior of the realizable KES 
model. The results are presented in this section. Physical time step of s1012∆ 6−×= .t  is applied 
advance the integration with a dual-time stepping scheme. The flow develops and is sampled until 
time of 0.079sec. 

Figure 4(a) shows the instantaneous streamlines around the 3D NACA0015 wing in the 
middle plane of spanwise direction at physical time 0.079sec, which represents a typical 
movement of separated vortices in static stall. Figure 4(b) represents the mean flow streamlines, 
which denotes the separation bubble in a time-averaged sense. 

The averaged Reynolds stresses are shown in Figure 5. As shown in Figure 5(a), both the 
areas near the trailing edge and the suction region, from where vortex is shedding, have a high 
value of rmsu . rmsv  is strong only in the wake region right after the trailing edge, as shown in 
Figure 5(b). Similar to rmsu , the antisymmetric stresses vu ′′  is more active in the suction region, 
as shown in Figure 5(c). From the contours of Reynolds stresses, it can be seen that turbulence 
dominates in both suction region and trailing edge. The averaged Reynolds stresses for 3D 
simulation are similar to those in 2D. 

Figure 6 shows an instantaneous isosurface for the spanwise velocity around the 3D 
NACA0015 wing at about time 0.079sec. The spanwise velocity is always small in magnitude, 
since the flow is inherently 2D-predominant. The isosurface is at a level of 0.05m/s. Consistent 
with the instantaneous streamlines shown in Figure 4(a), the spanwise velocity develops from the 
leading edge and becomes a significant value in the region where the flow fully separates. The 
value decreases after a distance from the separation point, then increases in a region above the 
trailing edge. The variation is associated with the vortex shedding from leading and trailing edge 
of the wing. The spanwise distribution gives information to the 3D unsteady turbulence 
fluctuation, which is captured in this simulation. A typical pattern of spanwise vorticity 
distribution is presented in Figure 7 in the middle plane around the 3D NACA0015 wing. Again it 
can be seen that vortices are shed from the suction region and trailing edge. 

Turbulence signals are probed and collected at ten points with locations shown in Figure 
7. The Locations are selected to capture the vortex structure and to estimate the KES behavior in 
simulating the flow around the wing. Figure 8 shows a typical time evolution of the ratio of 
subgrid length scale to the grid scale at these ten grid points. The length scale ratios at points 1, 9 
and 10, are shown in Figure 8(a). At these three points, the KES model behaves as LES since the 
time-averaged subgrid length scale is comparable to the grid scale. However, the KES model 
behaves as VLES in points 2-8, as shown in Figure 8(b), because the subgrid length scale is 
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usually much larger than the grid scale by one order in magnitude. The subgrid length scale has a 
strong character of unsteadiness for these ten points probed. As shown in Figure 8(a), the KES 
may behave as VLES sometime, although it works like LES most of time at points 1, 9 and 10. 
The KES may work as LES at point 3 at some time, although it works as VLES most of time. 
Therefore, the KES model switches between VLES and LES adaptively based on the its subgrid 
length scale, and the switching of the behavior is unsteady. 

The frequency spectra analyses of the resolved velocity are performed and presented in 
Figure 9. Figure 9(a) shows the frequency spectra of 11E  at point 1, where there exists an inertial 
range from about 500Hz to 2000Hz. The spectra in the inertial range matches the Kolmogorov-
Obukhov spectrum (-5/3 law). Figure 9(b) represents the frequency spectra of 11E  at point 10, 
where an inertial range exists from about 800Hz to 3000Hz. Similar inertial sub-range is captured 
at point 9. The captured inertial range represents the LES behavior of KES. However, the 
frequency spectrum of 11E  at point 4 and 7, shown in Figure 9(c) and 9(d), respectively, does not 
show an inertial sub-range. That is, the KES model behaves as VLES at these points, which is 
consistent with Figure 8(b). 
 

Airload analysis: 
Previously KES was applied to predict the airloads around NACA0015 airfoil in 2D 

simulations (Fang and Menon, 2006), in a good agreement with experiment (Piziali, 1994) as 
shown in Figure 10. Similar work has been performed in ONERA (Gleize, et al. 2004) with 
various RANS models of Spalart-Allmaras, k-ω, k-ω with SST correction, k-ω with Kok 
modification, k-ω Kok + SST, k-l, k-ε, and multi-scale model. In the ONERA study, lift 
coefficient CL was overpredicted and drag coefficient CD was underpredicted after static stall, 
even with fine grids up to 3.5 million. 

The airloads for the 3D AoA o16 are shown in Figure 10, compared with those in 
previous 2D simulations and experimental measurement. In Figure 10(a) the lift coefficients for 
3D simulation is lower than that in 2D simulation, but still with the range of experimental 
measurement. The drag and moment coefficients for 3D simulation is a little higher than those in 
2D simulation, with an good agreement with experimental measurement as shown in Figures 10(b) 
and 10(c), respectively. 
 

2D Oscillatory Airfoil Flows: 

The boundary conditions for flows over the pitching airfoil are similar to those used for 
the stationary airfoil. The tangential and normal velocities of the moving surface are equal to the 
surface grid velocities. The pressure is corrected by solving equation (27). For all the pitching 
cases, the reduced frequency is 10.=k . The flow is initialized from a steady state solution before 
separation at the mean angle of attack, which is obtained through the scheme of local-time-
stepping. For all the numerical solutions presented in this paper, the first cycle in transition is 
eliminated, and a physical time step of s1009∆ 6−×= .t  is employed to advance the solution. 

Dynamic attached flow: 
The NACA-0015 airfoil movies at a motion with the angle of attack 

)/sin(. CtkU∞+= 2244 ooα , resulting in an attached flow. This flow essentially serves to validate 
the accuracy of the flow solver and KES model in calculating unsteady attached flow. Due to the 
absence of flow separation, the airloads are found to be repeatable after the second period of 
airfoil oscillation. KES results of the unsteady airloads on the oscillatory airfoil are presented in 
Figure 11, compared with the experimental data. The lift coefficient LC  is under-predicted a little 
at the top of the upstroke, as shown in Figure 11(a). Figure 11(b) shows the drag coefficient DC , 
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with a small under-prediction during the whole cycle. Figure 11(c) shows an over-prediction of 
the moment coefficient MC  during the whole cycle. MC has a better agreement with experiment in 
the downstroke than in the upstroke. Generally the three airloads are in a good agreement with 
experimental measurement. 

Dynamic light stall: 
A case of dynamic light stall is simulated, where the NACA-0015 airfoil movies at a 

motion with )/sin(.. CtkU∞+= 22248810 ooα . In the experiment, a small region of flow begins to 
separate in the end of the upstroke. In this case, two cycles of flow are simulated after it finishes 
the transition from initial conditions. Figure 12 shows the airloads for each cycle, where cycle-to-
cycle variations can be observed. As shown in Figure 12(a), the lift coefficient LC  compares well 
with experiment in the upstroke, but it is much more under-predicted in the downstroke. There is 
a small over-prediction of the drag coefficient DC in all cycles, and DC  oscillates from the end of 
upstroke to the middle of downstroke, as shown in Figure 12(b). Figure 12(c) shows the 
momentum coefficient MC . It can be seen that MC  agrees well with the experiment in the 
upstroke, while becomes higher in most of the downstroke. There are more obvious oscillations in 

MC  where DC  shows its oscillations. The character of oscillation is due to the flow separation 
and vortex shedding in the downstroke roughly between o115.  and o69. . When visualizing the 
simulated flow field, it can be seen that the flow starts separation in a small region near the 
trailing edge in the end of the upstroke (about o115. ), and persists more than half of the 
downstroke (about o69. ). The phenomenon of vortex shedding is observed from the trailing edge 
when flow is separated. The flow becomes reattached after about AoA o69.  in the downstroke and 
maintains attached until the end of the upstroke. Again in general, the KES results of airloads for 
this dynamic light stall case are in a good trend with experimental data. 

Dynamic deep stall: 
Another case of dynamic deep stall is simulated, where the NACA-0015 airfoil movies at 

a motion with )/sin(.. CtkU∞+= 22550313 ooα . The flow is fully separated in most of the airfoil 
oscillatory motion. Figure 13 shows the unsteady airload hysteresis for the deep stall. Seven flow 
cycles have been simulated. This number might not be enough to get a smoother average solution, 
since over twenty cycles of measurement were taken to get an averaged data in the experiment. In 
the upstroke, all the three airloads, lift coefficient LC , drag coefficient DC , and momentum 
coefficient MC , have a very good agreement with experimental measurement. But there is an 
obvious overshoot of them in a short region of the downstroke roughly after the end of the 
upstroke, which is an interesting issue to be revisited in the future. Beyond this region, all the 
predicted airloads scatter around the value of measurement, and it would be expected that a few 
more cycles of solutions can be averaged to match the experimental data. 

In the case of dynamic light stall, the vortex is shed from the trailing edge only. In this 
deep stall case, vortex is shed from the trailing edge as well as the leading edge. There is a 
complex unsteady interaction between the leading-edge vortex, also named “dynamic stall 
vortex”, and the trailing-edge vortex. This interaction is dynamic stall phenomenon, which has 
been attracted intensively for tens of years in the community of aerodynamics. The overshoot 
problem observed in the airloads might be related to this interaction numerically. Figure 14 
presents snapshots of the flow evolution in a typical cycle, where contours represent the 
magnitude of spanwise vorticity. Starting from the minimum angle of attack, the airfoil pitches in 
the upstroke. The upstroke acceleration has an effect on reducing the angle of attack, and 
increases the static stall limit, cα , keeping the flow attached. As discussed in previous work 
(Fang and Menon, 2006), cα  is about o13  for NACA-0015 airfoil, where the flow starts mild 
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separation near the trailing edge. In the simulation of deep stall, the flow keeps attached in the 
upstroke until mild separation starts at about o2415.=α , as shown in Figure 14. Roughly after 

o218.=α , the flow becomes fully separated in the upstroke. Near the end of the upstroke 
( o2818.=α ), there are obvious unsteady interactions among the leading-edge vortices and the 
trailing-edge vortices, and the leading-edge vortices dominate the vortex structure around the 
airfoil. When the airfoil changes its motion into downstroke, the vortex is shed with much 
stronger vorticity in the trailing edge due to the positive acceleration of airfoil. The vortex 
interactions become stronger, resulting in a clear vortex process of breakup-recombination-
breakup. Only minor part of weakly recombined vortex structure moves into wake, while most of 
the broken eddies are dissipated in the region around the airfoil. This process dominates in the 
downstroke down to about o2416.=α . Then the vortex shedding becomes weaker and major part 
of the vortex interaction moves into the wake. The flow separates only near the trailing edge after 
the downstroke of about o2910.=α , and becomes attached again near the end of downstroke. 
 
 

VI.  Concluding Remarks/Future Plans 

A two-equation VLES/LES model based on the k-kl approach is developed and 
demonstrated. A realizability constraint is used to limit the model coefficients. The subgrid length 
scale is found to be sensitive to the realizability constraints. A new model of compressible 
realizability constraints is proposed to improve the numerical oscillation in the flow region with 
strong shear. The realizable KES model has been applied to simulate static stall around a 3D 
NACA0015 wing and dynamic stall around a 2D NACA0015 airfoil. Vortex shedding and 
massive separation at high Reynolds number are clearly captured with satisfying accuracy. The 
detailed behavior of the realizable KES model on high AoA aerodynamics is studied. 

In the future, a dynamic model for the coefficients of eddy viscosity and kinetic energy 
dissipation will be developed. Many issues still remain to be addressed. The current simulations 
were limited to airfoil flows. The KES model will be extended for more canonical flows such as 
isotropic turbulence and spatial shear layers. Finally a locally dynamic model for the estimation 
of model constants is being developed based on earlier work (Kim and Menon, 1999). This 
approach is needed to give general universality to the KES method. 
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Figure 1. Multiblock C-grid around NACA-0015 wing, every 2nd point is shown in each direction. 
 

  
         2(a) ∆/sgsl               2(b) sgsl  
Figure 2. Contours of instantaneous length scale around NACA0015 airfoil at AoA= o13 , by 
realizable KES. (a): ∆/sgsl ; (b): sgsl . 
 

  
         3(a) ∆/sgsl               3(b) sgsl  
Figure 3. Contours of instantaneous length scale around NACA0015 airfoil at AoA= o16 , by 
realizable KES. (a): ∆/sgsl ; (b): sgsl . 
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  4(a) Instantaneous    4(b) Time-averaged 
Figure 4. Flow streamlines around 3D NACA0015 wing, at AoA = o16 , by realizable KES. (a): 
instantaneous; (b): time-averaged. 
 

  
  5(a) ∞uurms / .     5(b) ∞uvrms / . 
 

 
  5(c) 2

∞′′ uvu / . 
Figure 5. Contours of time-averaged Reynolds stress around a 3D NACA0015 wing at AoA= o16 . 

(a): ∞uurms / ; (b): ∞uvrms / ; (c): 2
∞′′ uvu / . 
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8(a) Point 1, 9 and 10.    8(b) Point 2-8. 
 
Figure 8.  Typical evolution of the ratio of subgrid length scale to grid scale at probed points. (a): 

point 1, 9 and 10; (b) point 2-8. 
 
 

  
   9(a)      9(b) 
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Figure 6. Instantaneous isosurface for 
spanwise velocity of 0.05. 

Figure 7. Contours of instantaneous spanwise 
vorticity and probe points for turbulence 
signal in the middle z-plane. 
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   9(c)      9(d) 
 
Figure 9. Frequency spectrum of the resolved velocity u at different points around 3D 

NACA0015 wing, AoA= o16 . 
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10(a) Lift coefficient.     10(b) Drag coefficient. 
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10(c) Moment coefficient. 
 
Figure 10. Comparison of the airloads around NACA-0015 airfoil/wing between KES results and 

experimental measurement. (a): Lift coefficient; (b): Drag coefficient; (c): Moment 
coefficient. 
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11(a) Lift coefficient.    12(a) Lift coefficient. 
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11(b) Drag coefficient.    12(b) Drag coefficient. 
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11(c) Momentum coefficient.   12(c) Momentum coefficient. 

Figure 11. Airloads hysteresis for the dynamic 
attached flow around NACA0015 
airfoil, with )/sin(. CtkU∞+= 2244 ooα , 

10.=k , 290.=∞M , 610951 ×= .Re . (a): 
Lift coefficient; (b): Drag coefficient; 
(c): Moment coefficient. 

Figure 12. Airloads hysteresis for the dynamic 
light stall around NACA0015 airfoil, 
with )/sin(.. CtkU∞+= 22248810 ooα , 

10.=k , 290.=∞M , 610951 ×= .Re . (a): 
Lift coefficient; (b): Drag coefficient; 
(c): Moment coefficient. 
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13(a) Lift coefficient. 

 
13(b) Drag coefficient. 

 
13(c) Momentum coefficient. 

 

 

 

 

 

 

 

 

 

 

Figure 13. Airloads hysteresis for the dynamic 
deep stall around NACA0015 airfoil, 
with )/sin(.. CtkU∞+= 22550313 ooα , 10.=k , 

290.=∞M , 610951 ×= .Re . (a): Lift 
coefficient; (b): Drag coefficient; (c): 
Moment coefficient. 

Figure 14. Instantaneous contours of vorticity 
magnitude for the dynamic deep stall 
around NACA0015 airfoil, with 

)/sin(.. CtkU∞+= 22550313 ooα , 10.=k , 
290.=∞M , 610951 ×= .Re . 
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