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Abstract 

A new two-equation Kinetic-Eddy Simulation (KES) model is developed for 
large-eddy simulation (LES) of wall-bounded high Reynolds number flows. This 
model solves for the local unresolved kinetic energy and the local length scale. The 
dissipation of the kinetic energy depends on the length scale, as well as, on the length 
scale gradient. New terms of subgrid viscous work, subgrid pressure diffusion, and 
subgrid heat transfer are also proposed for the closure of energy equation. In most 
of flow domain of simulated cases, the subgrid length scale is compatible to 
computational grid scale, and KES model behaves like a LES. In some other regions, 
the length scale tends toward the integral length scales, smoothly approaching very 
large-eddy simulation (VLES) limit. Thus, this closure is considered a VLES-LES 
approach. The KES model has been applied for 2D flows around NACA-0015 
airfoils at different angles of attack, including regions of linear-lift, mild separation 
and static stall. The predicted aerodynamics compares well with experimental 
measurement. Especially in the static stall simulations, vortex shedding with massive 
separation is clearly captured. 

 
 

I.  Introduction 

It is still one of the most challenging problems to accurately simulate high-Reynolds number 
turbulent flows around airfoils/wings at a large angle of attack (AoA). As summarized by Kotapati-
Apparao et al. (2004), Mellen et al. (2003), and Dahlström and Davidson (2003), the flow includes adverse 
pressure gradient, streamline curvature, boundary layer separation, and transition from laminar to turbulent 
flow. There is also a flow singularity at the stagnation point at the airfoil leading edge (LE). The flow is 
sensitive to the airfoil geometry, the angle of attack, and the Reynolds number. Different flow regimes 
motivate various hierarchies of simulation strategies. In flows with a large AoA, the trailing edge (TE) 
separation is strongly coupled with the pressure peak at the leading edge. The wake is unsteady and 
complicated. Therefore all the regions around the airfoil are equally important. The object of this work is to 
investigate flows with mild and massive separation, and to investigate the feasibility of LES simulations for 
such flows. 

Similar investigations have been performed in the European research project LESFOIL (see 
Mellen et al. 2003, for a detailed review). Several Reynolds-averaged Navier-Stokes (RANS) equation 
models (steady and unsteady, compressible and incompressible) were applied to the Aerospatiale A-airfoil 
at an angle of attack o3.13 . It was found that very few RANS models have the capability to resolve this 
problem accurately. Compared with experimental data, satisfying results were obtained by using 
compressible LES (Mary and Sagaut, 2002), incompressible LES (Dahlström and Davidson, 2003), and 
Detached-Eddy Simulation (Cokljat and Liu, 2002, and Kotapati-Apparao et al., 2004). 

Massively separated airfoil flows have a strong character of unsteadiness away from the wall. The 
RANS approaches, which are designed to solve the steady state, time-averaged flows, cannot be expected 
to predict this kind of turbulent flows well. Direct numerical simulation (DNS) would, of course, be the 
ideal method, if computational resource was available. LES is the current choice, which is an intermediate 
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technique between DNS and RANS. In LES, the contribution of the large, energy-containing structures to 
momentum and energy transfer is computed exactly, and only the effect of unresolved small scales of 
turbulence is modeled. Similar to DNS, LES has the capability to provide the time dependent flow features. 
However, LES is still extremely expensive, requiring fairly fine meshes in the near-wall region. In a wall-
resolved LES, the distance from the wall to the first grid should be at least less than two wall units 
( 21 <+y ), in order to resolve the instantaneous velocity gradient close to the wall and capture the near-wall 
structures sufficiently (Piomelli and Chasnov, 1996). Thus, it is apparent that even a pure LES is nearly 
beyond current computer capacity for resolving wall turbulence at high Reynolds numbers. A natural way 
is to consider wall functions for LES with coarse grids (coarse LES), which allows the use of coarser 
resolution to reduce the cost for some specific flow cases (Mellen et al., 2003).  But near-wall modeling for 
LES is not well understood (Piomelli and Balaras, 2002). 

In this work, a new KES subgrid model is developed instead of a pure LES model, where two 
equations are solved for the subgrid kinetic energy and the subgrid length scales locally. Theoretically, 
KES becomes very large eddy simulation (VLES) when only the largest scales of turbulence are resolved 
on a very coarse grid; LES when small scales of turbulence close to grid are resolved; and direct numerical 
simulation (DNS) in the limit of very fine grid, i.e., the length scale and kinetic energy tend to vanish. KES 
is applicable to near-wall turbulence without any ad-hoc specification of the distance from the wall. This 
model has been applied to 2D flows around NACA-0015 airfoil. The numerical results have been compared 
with available experimental, and good agreement is observed. 
 
 

II.  Filtered Navier-Stokes Equations for LES 

The equations governing the motion of the resolved eddies can be obtained by separating the large 
scales from the small scales. LES equations are obtained using a Favre (density weighted) spatial filtering 
of the compressible Navier-Stokes equations. A Favre-filtered variable is defined as ρρ /

~
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the Favre-filtering operation, the resolved transport equations can be obtained in a conservative form as 
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where ρ is the density, iu is the velocity in the ix direction, p  is the pressure, and E ( 2
2
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total energy per unit mass. The filtered total energy E~  includes the subgrid kinetic energy (to be discussed 
later) )~~( iiii
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Here the symbol “↔” represents the Favre filtering. The resolved molecular viscous stress and heat fluxes 
are given by 
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1  is the strain-rate tensor, and µ~  and κ~ are the molecular viscosity and 

the thermal conductivity at the filtered temperature T~ , respectively. In the derivation, the molecular 
viscous stress is approximated as ijij STST ~)~()( µµ ≈ . 

The SGS effects appear through the SGS viscous stress sgs
ijτ , SGS total energy diffusion sgs

iE , 

SGS pressure diffusion sgs
iP , SGS viscous diffusion sgs

iσ , and SGS heat conduction sgs
iq . These terms are 

unknown in the momentum and energy equations of the filtered Navier-Stokes, and are defined as, 
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III.  KES Subgrid Model 
 
KES momentum closure 
 Most SGS models currently used are the eddy-viscosity models (EVM) of the form 
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that relates the SGS stresses sgs
ijτ  to the resolved strain-rate tensor ijS~  through eddy viscosity tν . By 

dimensional analysis, the eddy viscosity tν  is proportional to the product of SGS velocity scale, sgsk , 

and SGS length scale, sgsl . Because the most active of the subgrid scales are those closest to the cutoff, the 
natural subgrid length scale in LES modeling is the filter length, which is proportional to the local grid size. 
In most applications, the eddy viscosity tν  is obtained algebraically to avoid solving additional equations. 
For instance, in the most widely used Smagorinsky model (1963), it is assumed that the subgrid length 
scale is local grid spacing length ( ∆=l ), and the eddy viscosity is written as SCst

~)( 2∆=ν , where 

ijijSSS ~~~ 2=  is the magnitude of the strain-rate tensor. 

There are some other more accurate subgrid scale models, such as two-point closure models. Most 
of these models are based on the equilibrium hypothesis and was derived based on the theoretical analysis 
of energy transfer spectrum. But the spectral model is difficult to apply for complex turbulent flows, 
particularly in wall-bounded turbulence. In the presence of wall boundaries, the subgrid length scale needs 
to be modified to account for the reduced growth of the small scales near the wall. Usually the Van Driest 
damping function is introduced to modify the eddy viscosity. In the Detached-Eddy Simulation (DES) 
(Spalart et al. 1997), the normal wall distance is used to substitute the LES filter width for the pseudo-
viscosity transport equation in the near-wall region. 

In this work, a new approach is proposed. This model solves the subgrid sgsk  and sgskl)( -equation 

for the subgrid velocity scale, sgsk , and the subgrid length scale, sgsl . The transport equations for subgrid 
sgsk  and sgskl)(  are 
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Here, the dissipation coefficient of sgskl)(  is a function of subgrid length gradient given as 
2
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The coefficient Pr  is laminar Prandtl number, taken to be 0.72. The dissipation coefficient of subgrid sgsk  
is 9160., =kCε , and the Prandtl-Schmidt number for subgrid sgsk  90.=kσ . 06670.=νC  is the eddy 

viscosity coefficient. The production coefficient of subgrid sgskl)(  is 061.=lC , and the Prandtl-Schmidt 

number for subgrid sgskl)( 2=klσ . 



The subgrid-scale viscous stresses are modeled as a new approach, 
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with the subgrid eddy viscosity defined as 
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Here, the length scale, sgsl , is a natural scale to bridge LES with DNS and VLES. Theoretically, when the 
length scale, sgsl , is close to the computational grid size ∆ , it approaches LES; when the computational 
grid size ∆  becomes as small as to Kolmogrov length scale, the subgrid length scale sgsl  should vanish in 
the limit of DNS; when the length scale, sgsl , becomes much larger than ∆ , then it approaches the integral 
length scale and becomes very large-eddy simulation (VLES). These limiting features still need to be 
proven and full evaluation of the KES approach is planned in the near future to properly validate and 
establish this methodology. Also note that since sgsl  is a continuous function, there will be regions where 
this model will predict neither LES nor VLES. The performance of KES in this intermediate region is of 
particular interested in this study. 
 
KES energy transport closure 

In addition to the closure for sgs
ijτ  of equation (7), there are other unclosed terms appearing the 

LES filtered energy equation. In this work, SGS total energy sgs
iE , SGS pressure diffusion sgs

iP , SGS 

viscous work sgs
iσ , and SGS heat conduction sgs

iq are explicitly closed as, 
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where eσ , pσ  and tσ  are the effective subgrid Prandtl-Schmidt numbers for energy, pressure, and 
temperature, respectively. At present they are taken as 0.9. 
 
KES realizability 

In principle, the realizability conditions of LES should be constrained as, ( ) 0≥− iiii uuuu ~~ρ , 

( ) ( )( )jjjjiiiijiji uuuuuuuuuuuu ~~~~~~ ρρρρρρ −−≤−
2

, and ( ) 0≥− jiji uuuu ~~det ρρ  in an eddy viscosity model 

(EVM). Earlier, sgsk  based one-equation LES subgrid model was observed to satisfy all these realizability 
constraints (Nelson and Menon, 1998). At present, these constraints have not been strictly enforced for the 
KES model. Rather, a lower limit for sgsk  and sgsl  (for instance, 2310−  is used in KES) are enforced. For 
the subgrid length scale, sgsl , the upper limit should tend toward the integral scale, which is determined by 
geometrical considerations. 200≤∆/sgsl  is employed for the present study. Future studies will revisit 
these limiting values and the realizability constraints. 

The class of k-equation models is known to overproduce production in the region near a stagnation 
point, known as the stagnation point anomaly (Durbin and Petterson, 2001). This can be improved by, 
following Durbin’s correction (Durbin, 1996), by using the realizability constraint, sgssgs

ij k20 ≤≤ τ , upon 
the eddy viscosity via a bound on the time scale. The subgrid viscosity is modified with a bounding 
viscosity max,tν  as 
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 Again, these limiting constraints are defined for the particular application of external flow studies. 
The generality of this approach or its validity for other applications remains to be established. 
 
 

IV.  Numerical Approach 

The LES filtered equations along with the KES subgrid model equations (13-14) are integrated by 
a dual time-stepping procedure (Jameson, 1991) and discretized by the finite volume method (FVM) in this 
work. A second-order accurate, three-point backward differencing is used in the physical time 
discretization, and the modified five-stage Runge-Kutta scheme (Jameson, et al., 1981; Jameson, 1991) is 
implemented for the pseudo-time evolution of solutions between the physical time steps. A cell-centered 
second-order scheme is applied in the space discretization. In order to eliminate spurious fluctuations, the 
second and fourth-order Jameson artificial dissipation (Jameson, 1991), based on pressure gradient, is 
applied. The viscous coefficients of 0.01 and 0.008 are employed for the second and fourth-order 
dissipation. 

The far-field characteristic boundary condition (Jameson, 1985) is specified at the outer boundary 
of the C-grid by computing one dimensional Riemann invariants. At the outflow boundary, zero gradient 
condition is generally applied for the flow variables. At the wall, the no-slip condition is used with zero-
gradient for pressure and adiabatic wall for temperature. In the spanwise direction, periodic boundary 
conditions are employed. 

Both of sgsk  and sgsl are set to zero on the wall. Based on the analyses of energy dissipation rate 
on the wall, the following values are imposed on the first cells above the surface, 

( ) 1
50

1 ∆250 /~~. .
ii

sgs uuk ν=       (23) 

)./( ν530∆2
1

sgssgs kl =       (24) 
where 1∆  is the grid length scale of the first cells, and ν  the kinematic viscosity. This set of condition, 

equations (23) and (24), has been tested for 51 <+y  in this work. sgsk  is set to 20160 ).( ∞u  and sgsl  is set to 
the local grid length scale ∆  at far field, and they are initialized with the same corresponding value also. 

An efficient parallel version of the solver has been developed, based the Message-Passing 
Interface (MPI) library. For the parallelization and complex geometry applications, the computational 
domain is split into multi-blocks, and each block is decomposed into zones. Each zone is enclosed with up 
to three layers of ghost cells. The ghost cells store flow variables transferred from the neighboring zone as 
numerical boundary condition. The parallel code has been tested on different system with good parallel 
efficiency. 
 
 

V.  Results and Discussion 

In this section, the numerical results of KES for the 2D flow around a NACA-0015 airfoil are 
presented at different angles of attack. Lift region covers the linear-lift, static stall, and mild separation in 
between. The model behavior of KES is studied in detail in the static stall region. The free stream Mach 
number is 0.291, and Reynolds number based on the free stream velocity, ∞u , and airfoil chord, C, is about 

6102× . The flow condition is setup according to the experiment of Piziali (1994). A multiblock of C-grid 
is used for the space discretization, as shown in Figure 1, where wake zone is cut into two blocks along the 
airfoil chord at the trailing edge. The outer boundary is set approximately 8C. The normal distance of the 
first grids to the wall is 5

1 101 −×=Cy / , with 51 <+y . The spanwise distance is 00120./ =Cz . The grid 
size is 541×97×2, which includes 391 points around the airfoil and 75 points in the wake. 

Although all studies represented here are for 2D, it is well understood that VLES/LES studies 
must be performed in full 3D to recover realistic turbulence dynamics. The results reported here are the 
first evaluations of this model. 3D simulations are underway and will be reported in the near future. 

 



Attached flows around NACA0015 airfoil 
The 2D attached flow around NACA0015 at AoA = 0o is simulated first. As shown in the 

instantaneous streamlines of Figure 2(a), no separation is observed. Figure 2(b) shows the pressure 
coefficient distribution, in an excellent agreement with experimental measurement. 

In the flow around NACA-0015 at AoA =13o there is mild separation near the trailing edge, as 
shown in Figure 3(a) by the streamlines of time-averaged flow. In the simulation of eight flow-time cycles, 
there is no significant difference between the instantaneous and time-averaged flow field for the flow 
streamlines, and the distribution of pressure and surface friction along the airfoil. Figure 3(b) shows that the 
time-averaged pressure coefficient pC  of KES agrees well with experimental data. 

 
Static stall around NACA0015 airfoil 

The flow around NACA0015 separates massively at angles of attack after 16o, and static stall 
happens. In this region, the flow has a strong character of unsteadiness. It is a big challenge to regular 
RANS models. KES is a model between LES and RANS, which is expected to capture turbulence 
structures near the wall at a grid resolution of RANS and capture unsteady phenomenon at the limit of LES. 
The flows at AoA = 16o and 17o are fully separated. Such simulations are a good test case to check the 
model behavior and performance. 

In the simulation of case with AoA=16o, the flow is averaged for about eight flow-time cycles 
after transition from initial condition. Figure 4(a) presents the time averaged streamlines. It can be seen that 
a big separation bubble exists near the trailing edge, which covers almost 2/3 of the airfoil upper surfaces. 
The predicted pressure coefficient agrees very well with experimental measurement, as represented by the 
black solid line in Figure 4(b). In Figure 4(b), the green dash is the distribution of an instantaneous pressure 
coefficient. It varies with the movement of vortex shedding from suction region and trailing edge. The 
unsteady movement of vortices is shown by the instantaneous streamlines in Figure 5. From the 
instantaneous streamlines it is seen that the flow is stalled with massive separation on the airfoil. At the 
earlier time, T1=1.3×10-2sec, one large-scale vortex originates around each of the suction region and 
trailing edge, rotating in opponent directions. In between, there is a larger vortex, which rotates in the same 
direction as the one from the suction region. The suction region vortex moves downstream and merges into 
the large vortex. The large vortex attracts the trailing edge vortex, and eventually is shed into the wake 
when becoming strong enough to leave the airfoil. 

Figure 6 shows the subgrid kinetic energy sgsk  contours at time T2=2.5×10-2sec. In such separated 
flows, the estimated sgsk  by KES has a strong feature of unsteadiness. The averaged Reynolds stresses are 
shown in Figure 7. As shown in Figure 7(a), both of areas near the trailing edge and suction region, where 
vortex is shed from, have a high value of rmsu . However, rmsv  is strong only in the wake region right after 
the trailing edge, as shown in Figure 7(b). Similar to rmsu  the antisymmetric stresses vu ′′  is more active in 
the suction region, as shown in Figure 7(c). From the contours of Reynolds stresses, it can be seen that 
turbulence dominates in both suction region and trailing edge. 

Figures 8(a-c) show the ratio of subgrid length scale to grid length scale, ∆/sgsl , for cases with 
AoA = o0 , o13  and o16 , respectively. In Figure 8(a), the vortex shear is not strong near the suction region. 
The ratio, ∆/sgsl , is smooth all over the flow field, except that high values exist in the leading edge and 
trailing edge. It is common in all simulation. The increase of length scale might be due to the singularity at 
the leading and trailing edge. In Figure 8(b) with AoA = o13 , there are several points of oscillation in the 
region above the trailing edge, where shear is strong. In Figure 8(c) with AoA = o16 , the oscillation points 
with high value of the ratio move upstream to the suction region, where shear becomes strong. Over all, the 
ratio of ∆/sgsl  becomes bigger in AoA o16  than that in AoA o13  wherever shear is stronger. 

The energy dissipation is also adjusted based on the variation of the subgrid length scale. Figures 
9(a-c) show the length scale sgsl , for the three AoA cases, in order to compare the pattern of ∆/sgsl  shown 
n Figures 8(a-c). In the wake region and wall boundary layer, the sgsl  is small. It also increases with 
turbulence diffusing downstream in the wake. Figure 9(c) shows that the sgsl follows the vortex pattern in 
the recirculation zone and the wake. Comparing Figures 8(c) and 9(c), it can be seen that ∆/sgsl  depend on 
both grid resolution and vortex structure in the flow. Model equation (15) also shows that the dissipation of 



subgrid length scale changes with the gradient of subgrid length scale sgsl . In most of other region with 
relatively weaker shear, the subgrid length sgsl has a value comparable to the grid length scale ∆ . The 
behavior of ∆/sgsl  and sgsl  makes KES a multiscale model and behave as a LES in most of the flow 
region. 

Figures 10(a-e) show instantaneous vorticity around NACA0015 at AoA = 17o at five time 
instants. It covers almost one cycle of vortex shedding from the trailing edge from 8.4×10-3s to 1.7×10-2s. 
The corresponding sgsk  contours are also shown in Figures 11(a-e), respectively. It can be seen that sgsk  
contours closely flow the vortex shedding, which is as expected. Figure 12 shows the pressure coefficient 
distribution of time averaged flow at AoA 17o, in a good agreement with experiment. In the region near the 
trailing edge, the pressure is overpredicted by KES. It might be owing to the 2D nature of current study. 
 
Airload Analysis 

In the experiment (Peziali, 1994), the airfoil pitched at frequency which is low enough to be 
looked at as a static stall. The airload prediction around NACA0015 airfoil has been carried out in ONERA 
(Gleize, et al. 2004) using various RANS models of Spalart-Allmaras, k-ω, k-ω with SST correction, k-ω 
with Kok modification, k-ω Kok + SST, k-l, k-ε, and multi-scale model. In the ONERA study, lift 
coefficient CL was overpredicted and drag coefficient CD was underpredicted after static stall, even with 
fine grids up to 3.5 million. As shown in Figure 14, current KES results of CL, CD, and moment coefficient 
CM agree well with experiment. Especially, the values of CL, CD and CM are in the middle of the range 
between up-stroke and down-stroke after static stall in simulated cases with AoA up to 17o. The 
aerodynamics before static stall is taken from an instant flow when the flow solution converges to a steady 
state. For both cases with AoA =13o and 16o, the airload is obtained with a time-averaged solution of about 
eight flow-time cycles. For the case with AoA = 17o, about 5.6 flow-time cycles of flow are averaged. 

 
 

V.  Concluding Remarks 

 A two-equation subgrid model is developed for application to high Reynolds, wall bounded flows. 
This model solves for both the characteristic unresolved kinetic energy and the local length scale. It also 
does not require any specification of distance from the wall, as needed in other hybrid RANS-LES 
approach. This model has been applied to 2D flows around NACA-0015 airfoil at different angles of attack, 
including region of linear-lift, mild separation and static stall. The predicted aerodynamics agrees well with 
available experimental data, especially for the airload. This model is successfully in predicting the static 
stall with satisfying accuracy, and has the capability to capture vortex shedding and massive separation at 
high Reynolds number. In the future, a dynamic model for the coefficients of eddy viscosity and kinetic 
energy dissipation will be developed. Many issues still remain to be addressed. The current simulations 
were limited to 2D due to resource constraint. Full 3D simulations are underway and need to be analyzed. 
The realizability constraints and the limiting behavior of the KES model need to be addressed not only for 
airfoil flows, but also for more canonical flows such as isotropic turbulence and spatial shear layers. Finally 
a locally dynamic model for the estimation of model constants is being developed based on earlier work 
(Kim and Menon, 1999). This model will be needed to give general universality to the KES approach. 
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Figure 1. Multiblock C-grid around NACA-0015 airfoil 
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  (a) Streamlines     (b) Pressure coefficient 
Figure 2. Streamlines and pressure coefficient around NACA0015 airfoil. AoA = o0 . 
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  (a) Streamlines    (b) Pressure coefficient 
Figure 3. Streamlines and pressure coefficient of the time-averaged flow around NACA0015 airfoil. AoA 

= o13 . 
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  (a) Streamlines    (b) Pressure coefficient 
Figure 4. Streamlines and pressure coefficient of the time-averaged flow around NACA0015 airfoil. AoA 

= o16 . 
 



 
Figure 5. Instantaneous streamlines around  Figure 6 Instantaneous subgrid sgsk  around 

NACA0015 airfoil at different time.  NACA0015 airfoil. AoA=16o. 
AoA=16o. 
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Figure 7. Contours of time-averaged Reynolds stress around NACA0015 airfoil. (a): ∞uurms / ; 

(b): ∞uvrms / ; (c) : 2
∞′′ uvu / . 
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  (8c) AoA = o16      (9c) AoA = o16  
Figure 8. Contours of instantaneous ∆/sgsl around. Figure 9. Contours of instantaneous sgsl around 

NACA0015 airfoil. (a): o0 ; (b): o13 ; (c): o16 .  NACA0015 airfoil. (a): o0 ; (b): o13 ;(c): o16 . 
 
 
 



 
 (10a) Vorticity at 8.4E-3s    (11a) sgsk at 8.4E-3s 

 
 (10b) Vorticity at 1.0E-2s    (11b) sgsk at 1.0E-2s 

 
 (10c) Vorticity at 1.3E-2s    (11c) sgsk at 1.3E-2s 

 
 (10d) Vorticity at 1.6E-2s    (11d) sgsk at 1.6E-2s 

 
 (10e) Vorticity at 1.7E-2s     (11e) sgsk at 1.7E-2s 
 
Figure 10. Snapshot of instantaneous vorticity around    Figure 11. Snapshot of instantaneous subgrid sgsk   

    NACA0015 airfoil, AoA = 17o.            around NACA0015 airfoil. AoA=.17o. 
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Figure 12. Pressure coefficient around NACA0015   13(a) Lift coefficient 

airfoil. AoA= o17 . 
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13(b) Drag coefficient.    13(c) Moment coefficient 

 
Figure 13. Comparison of KES and experiment (Piziali, 1994) for the airloads around NACA0015 airfoil. 

(a): Lift coefficient; (b): Drag coefficient; (c): Moment coefficient. 


