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Abstract
Large Eddy Simulation (LES) of wall-bounded flows
becomes prohibitively expensive at high Reynolds
(Re) numbers if one attempts to resolve the small
but dynamically important vortical structures in the
near-wall region. The LES wall-boundary condition
problem is thus to account for the effects of the near-
wall turbulence between the wall and the first node
and its transfer of momentum to the wall. Here we
state the problem and give a brief overview of meth-
ods currently in use, and possible future methods. To
illustrate the problem and quantify the accuracy of
some of the models we present a few results from
test cases ranging from fully developed turbulent
channel flows to three-dimensional problems of prac-
tical engineering interest.

1. Introduction
Almost all practical flows are turbulent and hence the
simulation of turbulent flow and its diversity of flow
characteristics remains one of the most challenging
areas in the field of classical physics. Most Computa-
tional Fluid Dynamic (CFD) codes presently used for
high Reynolds (Re) number complex flows are based
on the well-known Reynolds Average Navier-Stokes
(RANS) equations, [1-2], together with a turbulence
model, [2-4], for representing the effects of turbulence
on the mean flow. Although RANS correctly predicts
the mean flow in many cases, RANS often fail when
facing more complex flows. Moreover, RANS is not
appropriate when unsteady flow features are of prima-
ry concern or when these dominate the flow. On the
other hand, Direct Numerical Simulation (DNS), in
which all scales are resolved, is currently too expensi-
–––––––––––––––––––
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ve to be used for practical problems.
Large Eddy Simulations (LES), [4-9], present

an alternative way of improving qualitative and quan-
titative aspects of complex turbulent flow predictions
for both research and engineering purposes. LES re-
solves the three-dimensional time-dependent details of
the large and medium (i.e. resolved) scales, whereas
the effects of the small unresolved eddies are modelled
with a subgrid turbulence model. The separation into
grid and subgrid scales is usually accomplished by a
low-pass filter tied to the grid, but other methods are
now also slowly coming into use, cf. [10]. Despite
three decades of intensive research, and yet unresolved
issues, LES is considered the most promising method
for studying complex flows. Although it will remain
expensive in terms of cpu time and memory LES can
be the only reliable method for simulating complex
flows where RANS is inadequate.

Wall-bounded flows are characterized by much
less universal properties than free flows (ideally con-
sidered homogeneous isotropic) and are therefore more
challenging to compute. Within the viscous sublayer
the characteristic length scale is determined by the
friction velocity uτ and the viscosity ν, and outside of
this, the length scale of the most energetic eddies can
scale as the distance from the wall. As Re increases,
and the thickness of the viscous sublayer decreases,
the number of grid points required to resolve the near-
wall flow structures increases. Bagget et al, [11], es-
timated that the number of grid points required for a
‘wall-resolved LES’ scales as   O(Re )τ

2 , where Reτ  is
the friction velocity based Re-number. Moreover, un-
less the grid is sufficiently fine, the anisotropy of the
flow will cause anisotropy of the subgrid flow, neces-
sitating subgrid models capable of handling simulta-
neous flow and grid anisotropy. Consequently, high
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Re-number flows, especially in complex geometries,
are too expensive to compute with LES unless partic-
ular techniques are invoked to alleviate the severe
resolution requirements near the wall.

In principle this can be achieved by following
either of the following approaches:

• modify the subgrid model to accommodate inte-
gration all the way to the wall, taking simultane-
ous flow and grid anisotropy into account,

• use separate wall-models,

• use subgrid simulation models, which are based
on e.g. multi-scales techniques.

In this paper we will try to summarize these methods
and give a few illustrative examples to expose the fea-
tures of these methods.

The outline of this paper is as follows: In sec-
tions 2 and 3 we give a brief outline of conventional
and alternative LES models whereas in sections 4 and
5 we present two novel LES methods based on multi-
scales techniques, suited for wall-bounded flows. In
Sections 6, 7 and 8 we give a few examples of appli-
cations and in section 9 we conclude.

2. Large Eddy Simulation
Here we outline the classical LES formulation, give a
few examples of alternative formulations and finish
with a discussion of the near-wall complication.

2.1. Mathematical Formulation
In LES the flow variables are decomposed into large-
scale components (denoted by overbars) and small-
scale (subgrid) components (denoted by primes) by
applying a filtering operation,

f t G f t G f t dD( , ) ( , ) ( , ) ( , ) ,x x x z z z= ∗ = −∫ ∆ 3 (1)

where G is the filter function and ∆ the filter width.
Applying the filtering operation to the NSE yields,

∇⋅ =

+∇⋅ =−∇ +∇⋅ −∇⋅ +



 ⊗

v

v v v S B m

m

pt
v

ρ

∂

,

( ) ( ) ,
(2)

where v  is the velocity, p the pressure, S D=2ν  the
viscous stress tensor, D L L= +1

2( )T  the rate-of-strain
tensor, L v=∇  the velocity gradient tensor, and ν  the
viscosity. Specific to the LES model (2) are the sub-
grid stress tensor B v v v v= −⊗ ⊗  and the commutation
errors are m v v I Sv G p= ∗∇ + −⊗[ , ]( ) and m Gρ= ∗∇[ , ]v ,
where [ , ]G f f f∗∇ =∇ −∇  is the commutation operator,
[12-13]. Only the resolved scales are thus retained in
LES whereas the subgrid scale flow physics is group-
ed into B, which has to be modelled using a function-
al expression of the type B x B v x x( , ) [ ( , ); , ]t t t= ′ ′ . Phy-
sical arguments and mathematical analysis, e.g. [13-
15], suggest that: (i) B is invariant under a change of

frame; (ii) B is positive definite symmetric, provided
that G(x,∆) is symmetric; and (iii) that the inequali-
ties k tr= ≥1

2 0B , k2 2≥|| ||B  and detB≥0  must be satis-
fied for B to be positive definite. Furthermore, the
commutation error terms, mρ and mv, reflect the fact
that filtering and differentiation do not generally com-
mute, [13, 16]. The effects of mρ and mv on the re-
solved flow are not yet fully understood and must be
further examined, [16], and in the meantime, these
terms are usually grouped into the subgrid stress ten-
sor B that is subject to modelling.

2.2. Subgrid Modelling
We usually separate between Functional modelling,
which consists of modelling the action of the subgrid
scales on the resolved scales, and Structural modell-
ing, which consists of modelling the subgrid stresses
without incorporating any knowledge about the inter-
actions between the subgrid and the resolved scales,
[6]. However, for the purpose of this paper we prefer
to instead separate between isotropic and anisotropic
subgrid models since high Re-number complex flows
often are characterized by anisotropic flow on a wide
range of scales – typically reaching into the range of
scales that require modelling, as e.g. in the near-wall
region. The most frequently used subgrid models be-
long to the first category, viz.,

B B I D BD kk k tr= − =− =2
3

1
22ν , ,   (3)

where νk is the (scalar) subgrid eddy-viscosity. To
close (3) we need models for the eddy-viscosity νk and
the turbulent kinetic energy k, and for this we assume
the existence of characteristic length and velocity sca-
les and we infer separation between resolved and sub-
grid scales. Among these we have the One-Equation-
Eddy-Viscosity Model (OEEVM), [17],

∂ ν ν ν

ν
εt k k

k

k

k k k c

c k

( ) ( ) || || (( ) ) ,

,

/

/

+∇⋅ = +∇⋅ + ∇ +

=

v D2 2

1 2

3 2

∆

∆k

(4)

and the Smagorinsky (SMG) model, [18],

k c cI k D= =∆ ∆2 2 2|| || , || ||,D D  ν (5)

where the model coefficients (cI, cD, ck and cε) are ev-
aluated either from a |k|-5/3 inertial sub-range behavior
resulting in constant coefficients, or from a dynamic
procedure, producing spatio-temporally varying coef-
ficients. Different dynamic calculation methods have
been suggested, e.g. the dynamic Smagorinsky Model
(DSMG), [19], the One-Equation Dynamic Localiza-
tion Model, (DLM), [20], the Localized Dynamic Ki-
netic Energy Model (LDKM), [21-23], as well as the
Lagrangian Dynamic Model (LDM), [24].
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For anisotropic flows, with anisotropy extend-
ing into the subgrid scales, more advanced subgrid
models are required. Structural models are superior (at
least from a theoretical standpoint) to functional mod-
els in such flows since they do not rely on the local
isotropy assumptions on which the functional models
are based. The best examples of structural models are
the Mixed Model (MM) of Bardina et al., [25],

B v v v v D= − −⊗ ⊗ 2νk , (6)

and the Differential Stress Equation Model (DSEM),
Deardorff, [26]. The DSEM uses a modelled transport
equation for the subgrid stress tensor B,

∂
ν ε

t
T T

k m
k

D D m
kc k c c

( ) ( ) ( )

( ) ( ) ,
/ /

B B v LB BL

B B D I

+∇⋅ =− +

+∇⋅ ∇ − + + −

⊗

      
1 2 3 22

5
2
3∆ ∆

(7)

where νk kc k= ∆ 1 2/  and k tr= 1
2 B. The model coeffici-

ents are estimated from isotropic turbulence, and take
the values cm=4.13, ck=0.07 and cε=1.35. Anisotropic
functional models have been developed by Carati &
Cabot, [27], and Abba et al., [28], using fourth-rank
tensor eddy-viscosities, by Horiuti, [29], using multi-
level filtering, and by Schumann, [17], and Sullivan
et al, [30], using a decomposition of B into isotropic
and anisotropic components.

2.3. Near-Wall Flow Physics and Modeling
Close to a solid wall, to the leading order in y, being
the distance from the wall, the resolvable velocity v
can be expanded in a Taylor series of the form,

v e e e= + +( ) ( ) ( ) ,b y c y b y1 1 2
2

2 3 3 (8)

where ei, i=1,2,3, are unit vectors in the streamwise,
wall-normal and spanwise directions, and b1, c2 and b3

are random functions. Similarly for Bij,

B

b b y b c b c y b c b c y

c c y b c b c y

sym b b y
ij=

− − −

− −
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(9)

The LES model is thus required to satisfy not only
the boundary condition v 0=  but also the conditions
(9) on B when y→0. Considering the SMG model,
(3)-(5), we have that ∂ ∂v x b1 2 1/ =  and ∂ ∂v x b3 2 3/ =  so
that B c b b bD12

2
1
2

3
2 1 2

1=− +∆ ( ) /  and unless ∆∝y3 2/  in-
correct asymptotic behaviour at the wall is obtained.
For example, if (3) is to be used, a necessary require-
ment is that k y∝ 2  and νk y∝ 3, when y→0, in order
for B to comply with (9). Most structural models sat-
isfy (9) automatically but many models must be mo-
dified to satisfy (9). This can be done using:

• Damping functions, D, that act as regularization
prefactors to νk, such that   ν νk k=D . Typically

  D= − − +( exp( ( ) )) /1 3 1 2βy , where y u y+= τ ν/  is the
viscous length scale, u wτ τ= 1 2/  the friction veloci-
ty, τw the wall shear stress and v v ui i

+= / τ  a non-
dimensionalized velocity component;

• Dynamic modelling based on Germanos identity,
L T B= − ˜ , [19-23], in which L v v v v= −⊗ ⊗  and
T v v v v= −⊗ ⊗ . By assuming that B and T can be
closed with models of the same functional form
i.e. B D D=−2 2cD∆ || ||  and T D D=−2 2cD∆ || ||  we
have that L X YD D Dc c= − , where X D D=−2 2∆ || ||
and Y D D=−2 2∆ || || . Hence, in the least-squares
sence cD= ⋅ ⋅M L M M/ , where M X Y= − .

• Dynamic modelling based on the self-similarity
between B and L v v v v= −⊗ ⊗ , [24]. This obser-
vation can be used to evaluate the coefficient ck

and cε in the OEEVM (4). Bounds for ck and cε

are determined from the realizabilty constraints.

• Models for the eddy-viscosity coefficients that
include viscous effects, cf. [31]. If the model co-
efficients (cD and ck) are derived from more elabo-
rate versions of the energy spectrum than the in-
ertial subrange spectrum E K= −

0
2 3 5 3ε / /| |k , e.g.

the Pao spectrum E K K= −exp( (| | ) )/3
2 0

4 3kλ , it is
found that these coefficients are not constants
but complicated functions of the mesh Re-num-
ber Re || ||/∆ ∆= 2 D ν . This can be interpreted as
models with scale-dependent coefficients and im-
proves the predictive capabilities for transitional
and wall-bounded flows.

Alternatively we may use wall models. The sim-
plest wall models are based on analytical expressions
for the wall shear stress, τw, and they provide an alge-
braic relationship between the local wall stresses and
the tangential velocities at the first off-wall nodes.
Such algebraic models all imply the logarithmic law
of the wall for the mean velocity, which is not gener-
ally valid in complex flows. The equations governing
for the wall-layer can be approximated by the bound-
ary layer equations,

∂ ν ∂ ∂ ∂ ∂y y i iy i i t i j i j iv B g p v v v f( ( ) ) ; ( ) ,− = = + + −  gi (10)

[4]. Assuming that gi=0 the stress ν ∂( )y i iv B− 2  is
independent of y, and since Biy=0 on the wall (10) can
be integrated analytically to give the law-of-the-wall,

v
y y y

y B y y
y+

+ + +

+ + +
+=

≤

+ >






≈

   if   

   if   
  0

1
0

0 11 225
,

ln| | ,
. ,

κ

(11)

where κ≈0.41 is the von-Karmán constant and B≈5.2.
If gi=∂ip  it is still possible to integrate (10) analyti-
cally to recover the modified law-of-the-wall,
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For the full case, gi= + + −∂ ∂ ∂i t i j i j ip v v v f( ) , equation
(10) has to be solved numerically. This approach has
sucessfully been used by Wang, [32] and by Wang &
Moin, [33], in which (10) is solved on an embedded
near-wall grid to determine τw, using a mixing length
model. Alternatively, (11) or (12) can used to modify
the subgrid model by adding a subgrid wall-viscosity
νBC to the viscosity ν on the wall so that the effecti-
ve viscosity, ν+νBC, becomes,

ν ν τ ∂ ∂ τ+ = = +
BC w y P y P y Pv y u y v/( / ) / ,, , (13)

where the superscript P denotes that the quantity is to
be evaluated at the first grid point away from the
wall. This model can, in principle, be combined with
any other subgrid model, and in the notation +WM is
added to the baseline subgrid model name.

3. Alternative LES Models
As an alternative to model νk using k, as working va-
riable as in (4), we may instead model νk by its own
transport equation. The most well-known transport
equation model for νk is probably that of Spalart-All-
maras, [34], in which ν νk vf= 1˜ , where,

∂ ν ν ν ν ν σ ν

σ ν ν
t b

b w w

c S

c c f d

(˜ ) ( ˜ ) ˜ ˜ ([( ˜ )/ ] ˜ )

( / )( ˜ ) ( ˜ / ˜ ) ,

+∇⋅ = +∇⋅ + ∇

+ ∇ −

v 1

2
2

1
2

(14)

where f cv v1
3 3

1
3= +χ χ/( ), χ ν ν=˜ / , ˜ | | ˜ / ˜D f dv= +D ν κ2

2 2 ,
r D d=˜ / ˜ ˜ν κ2 2, f fv v2 11 1= − +χ χ/( ) , g r c r rw= + −2

6( ) ,
f g c g cw w w= + +[( )/( )] /1 3

6 6
3

6 1 6  and ˜ min( , )d y cDES= ∆ .
The model coefficients are calibrated in simple homo-
geneous and free flows and take the values: cb1=0.135,
cb2=0.62, σ=2/3, κ=0.41, cw1=3.24, cw2=0.3, cw3=2.0,
cv1=7.10 and cDES=0.65. This approach is commonly
referred to as Detatched Eddy Simulation (DES), [35-
36], but may be interpreted as LES.

In Monotone Integrated LES (MILES) the dis-
cretization effectively filters the NSE across the grid
using an anisotropic kernel. When founding MILES
on concepts like the Flux Corrected Transport (FCT),
[37], the functional reconstruction of the convective
fluxes is done using a flux-limiting method combin-
ing a high-order flux-function with a low-order disper-
sion-free flux-function using a non-linear flux-limiter
Γ. Moreover, the functional reconstruction of the vis-
cous fluxes is typically performed using linear inter-
polation. Similar approaches have been used by sev-
eral authors, e.g. [38-42], and are discussed in greater
deatail in [10], and references therein. Physical con-
siderations motivating MILES have been presented in

[42], and some formal properties were recently docu-
mented using databases of free and wall-bounded
flows, [43]. The modified equations provide the most
suitable platform for comparing MILES and LES and
following [42] the implicit subgrid model is,

B CL LC Ld Ld C v d= + + =⊗ ⊗T T β β2 , ( ),  (15)

where d is the inter-cell distance and β=β(Γ). Because
of the tensorial nature of the subgrid viscosity MI-
LES offers an attractive alternative to conventional
subgrid models when seeking improved LES for in-
homogeneous flows.

4. The Two-Level Simulation LES Model
In the Two-Level Simulation (TLS) approach of Ke-
menov & Menon, [44-45], both the resolved and sub-
grid scales of motion are explicitly simulated. Regard-
less of how this approach is implemented it is clear
that if both the resolved and subgrid scales are simu-
lated in three-dimensions this method is no different
from DNS, and thus far too expensive for engineering
flow problems. However, insprired by Kerstein, [46],
Kemenov & Menon developed an approach in which
the large scales evolve on an ordinary LES-grid under
the action of the subgrid force (∇⋅B ) which is com-
puted locally from the definition of the subgrid stress
tensor B involving both large and small scales. The
small scales evolve on locally embedded one-dimen-
sional grids. This reduction in dimensionality permits
the TLS approach to be computationally feasible and
applicable to high Re-number flows.

In this framework the equations for the large
scales are identical to the LES equations (2),

∇⋅ =

+∇⋅ =−∇ +∇⋅ −∇⋅


 ⊗

v

v v v S B

0,

( ) ( ) ,∂ t p
(16)

whereas the equations for the small scales are,

∇⋅ ′=

′ +∇⋅ ′ ′ =−∇ ′+∇⋅ ∇ ′

+∇⋅ − ′− ′









⊗

⊗ ⊗

v

v v v v

B v v v v

0,

( ) ( ) ( )

( ),

∂ νt p (17)

where B v v v v v v v v v v= − + ′+ ′ + ′ ′⊗ ⊗ ⊗ ⊗ ⊗( ) ( ) ( ) . In the
TLS model (17) is simplified such that ′v  is modeled
as a family of one-dimensional vector fields defined
on lines of arbitrary orientation. When the orientation
coincides with the orientation of the LES grid the re-
sulting (one-dimensional) equations become particu-
larly simple, cf. [44-45]. After that the equations for
′v  have been solved B can be obtained directly from

its definition in each LES cell.
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5. The Homogenization-Based LES Model
With the intent of deriving improved subgrid models,
particularly for high Re-number wall-bounded flows,
Persson et al., [47], use homogenization by multiple-
scales expansion, [48], to derive the LES model. To
this end they introduce the two-scale expansion,

v v v v x v x v

x

= + ′ = +∑ + ′

= + + + +∑





=
∞

−
−

−
− =

∞
δ δ δδ τ τ

δ δ δ τ

( , ) ( , ; , ) ( , ),

˜ ( , ; , ),

t t

p p p p p p t

k
kk

k
kk

ξξ ξξ

ξξ
1

2
2

1
1 1

(18)

where v x v x( , ) ( , )t t= 0  and p p t= ( , )x  denote the LES
variables whereas ˜ ˜ ( , )p p= ξξ τ  is the Lagrange multipli-
er necessary to guarantee that ∇ ⋅ =ξ v1 0. For high Re
not all eddy scales can be expected to be resolved, and
hence ′vδ  is represented by a stochastic process
w w= ( , )ξ τ  such that ′ = =−

−
−v v wδ δ δ ξ τ1

1
1 ( , ). Here, ξξξξ

and τ denote the subgrid (or independent) variables.
From the scaling symmetries of the NSE the only
natural choise for the subgrid variables is τ δ=t/ 2  and
ξξ=x/δ . Formal expansion of the NSE using (16) and
the chain rule of differentiation yields,

δ δ δ

δ

δ ν

δ

δ

ξ ξ

ξ
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ξ

− −

+=
∞
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where ∂ t  and ∇x , and ∂τ  and ∇ξ  denote differentia-
tion with respect to supergrid and subgrid variables.
Averaging (19) over ξξξξ and τ and identifying coeffici-
ents for δ-1 gives the LES equations,

∇ ⋅ =

∂ +∇ ⋅ =−∇ +∇ ⋅ ∇ − +


 ⊗

x

t x x x xp

v

v v v v B f

0,

( ) ( ) ,ν
(20)

where B w v v w= +⊗ ⊗1 1  is the subgrid stress tensor. In
order to close (20) we need to supply w  and v1. Iden-
tification of coefficients for δ-3 in equation (20) yields
that p p− −=2 2 ( , )ξξ τ  and that the stochastic process w
must obey ∂ +∇ ⋅ = ∇ −∇⊗ −τ ξ ξ ξνw w w w( ) 2

2p , with zero
mean over each LES cell. Identifying coefficients for

δ-2 in (20) now shows that p− =1 0. Finally, identifica-
tion of coefficients for δ-1 in (20) results in the sub-
grid (or microstructure) problem,

∇ ⋅ =

∂ +∇ ⋅ + =−∇ + ∇

−∇ ⋅









⊗ ⊗

⊗

ξ
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v
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w v
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( ),

p

x

(21)

and from which (together with w) the subgrid stress
tensor B w v v w= +⊗ ⊗1 1  can be obtained.

The fact that v1 depends only parametrically
on ∇xv  allowed Persson et al., [47], to derive soluti-
ons to (21) by superposition from problems without
parameter dependence, satisfying,

∂ =

∂ +∂ + = ∇ −
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m

m

kl
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j m

kl
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m j

kl
j
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j lw w w

0
2

,

( ) ,
(22)

so that v vj
kl
j

x
k

l1= ∂χ , from which it is evident that,

B w w v A vij
i

kl
j j

kl
i

x
k

ijkl x
k

l l= + ∂ = ∂( ) ,χ χ (23)

where Aijkl is a fourth-rank eddy-viscosity tensor. In
[47] an attempt was made to estimate Aijkl based on a
particular choise of w and the assumption of negligi-
ble subgrid transport. The choice of w  is not simple,
but chosing w to comply with the Kolmogorov iner-
tial subrange spectrum E cK( ) / /k k= −ε2 3 5 3 and to sat-
isfy the constrain ∇⋅ =w 0  yields that,

A Ahjkl
c c k

hjkl
K= ε

π ν

2 3 2

11 32

/

/( )
˜ ,

∆
(24)

where ˜ ˜ ( )A Ahjkl hjkl= ∆∆  is a tensor expressing the local
anisotropic grid scaling.

6. Numerics
The application of LES to engineering problems re-
quires not only good subgrid models and fast comput-
ers, but also accurate and robust numerical methods.
Unstructured grids are desirable since the time required
for generating unstructured grids is usually considera-
bly lower than for block-structured grids. To this end
the Finite Volume (FV) method is appropriate. How-
ever, non-dissipative schemes that conserve not only
momentum but also kinetic energy are required for
successful LES computations. Discrete conservation
of kinetic energy ensures robustness without numeri-
cal dissipation, which compromises accuray.

In the FV-method, the domain D is partitioned
into non-overlapping cells ΩP. The cell-average of the
field f over the Pth cell is f fdVP V= ∫1

δ Ω  so that Gauss
theorem may be used to formulate the semi-discretized
LES-equations. By integrating these in time, using
e.g. a multi-step method, [49], the discretized LES-
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equations ((2) and (18)) become,
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where m, α i and βi are parameters of the scheme and
F df

C
f

, ( )ρ= ⋅v A , F v A vf
C v

f fd, ( )= ⋅ , F v B Af
D v

f d, ( )= ∇ −ν
are the convective and viscous fluxes. In order to ob-
tain 2nd order accuracy, a cell-centered scheme is used,
utilizing linear interpolation for the convective fluxes
and central difference approximations for the gradients
in the viscous fluxes. Conservation of kinetic energy
is automatically satisfied. Time-integration is carried
out by a three-point scheme defined by m=2, α0=1/2,
α1=–2, α2=3/2, β0=β1=0 and β2=1, and hence,

a p

a
P P
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2 1
2
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∆ ∆

(26)

where the coefficients aP and aN are functions of the
dependent variables. By combining (251) and (252), we
obtain the Poisson equation,

∇⋅ ∇ = + ⋅∑− + − +( ( ) ) ( [ ( ) ( ) ])a p a dP
n

P P
n

ff
1 2 1 2H v f A (27)

where the Laplace operator is discretized in a standard
manner and Ff

C,ρ is evaluated from the interpolated
velocity field v v ff

n
P P

n
P
n

fa H p+ − + += − ∇ +2 1 2 2( [ ( ) ( ) ]) . The
scalar equations are usually solved sequentially, with
iteration over the explicit source terms to obtain rapid
convergence, with the additional requirement that the
Courant number Co<0.4.

While tetrahedral cells allow complex geome-
tries to be easily meshed, they are not well suited for
turbulent flows – our experience shows that hexahe-
dral cells are preferable since they give more accurate
solutions. The grid may therefore be a combination of
arbitrary polyhedral cells, with mainly hexahedral
cells but using e.g. tetrahedral cells in regions that are
difficult to mesh with hexahedral cells.

7. Turbulent Channel Flow
The first test case to be discussed is a fully developed
turbulent channel flow at (bulk) Re-numbers between
15,000 and 800,000. The channel is confined between
two perfectly smooth parallel plates 2h apart, where h
is the channel half-width. The flow is driven by a fix-
ed mass flow in the streamwise (ex) direction defining
the mean velocity 〈 〉v . No-slip conditions are used in
the cross-stream (ey) direction and periodic conditions
are used in the spanwise (ez) direction. As initial con-
ditions a parabolic velocity distribution is used. After
reaching a statistically steady state the runs were con-

tinued for another 40·h/uτ time-units to collect appro-
priate statistics. The friction velocity is u wτ τ= 1 2/  and
τw is the wall-shear stress. The size of the channel is
6h×2h×3h in the streamwise, cross-stream and span-
wise directions, respectively. Instead of varying the
grid we vary the mass flow to obtain three target Re-
numbers: Reτ=395, 2030 and 10,000, of which the
first correspond to the DNS data, [50-51], and the sec-
ond to the experimental data, [52]. The grid consists
of 603 cells with uniform spacing in the stream- and
spanwise directions whereas geometrical progression
is used in the ey direction to cluster the grid towards
the walls. Runs and nominal parameters are collected
in Tables 1 and 2, respectively.

Table 1. Channel flow grids.

Re ∆x1
+ min(∆x2

+) ∆x3
+

395 40 0.3 20
2030 200 2 100

10,000 1000 11 500

Table 2. Nominal parameters of the channel flow runs

Run Re Grid Subgrid model Cf

Dean [53] 395 — 0.00655
I 403 603 OEEVM 0.00648
II 402 OEEVM+WM 0.00653
III 399 LDKM 0.00654
IV 405 MILES 0.0065
V 404 DES 0.0061
VI 404 HOM 0.00647

Dean [53] 2030 0.00435
VII 2036 603 OEEVM 0.00421
VIII 2046 OEEVM+WM 0.00439
IX 2049 LDKM 0.00436
X 2021 MILES 0.0433
XI 2054 DES 0.0423

Dean [53] 10000 0.00253
XII 10087 603 OEEVM 0.00212
XIII 10076 OEEVM+WM 0.00238
XIV 10054 LDKM 0.00244
XV 10065 MILES 0.00259
XVI 10034 DES 0.00261

Figure 1 shows the main flow features of the
channel flow in terms of vortex lines, contours of vx

and iso-surfaces of the second invariant of the velocity
gradient Q= −1

2
2 2(|| || || || )W D . The location of a vortex

line is given by the equation d dsx/ |/| |=ωω ωω , where s is
the distance along the vortex line. This equation is in-
tegrated using a 3rd order Runge-Kutta method to-
gether with a 2nd order linear interpolation scheme to
compute ωω  from the grid points. By correlating iso-
surfaces of Q with v  close to the wall it is found that
vortices above the low-speed streaks are often ejected
away from the wall, as found in experiments and LES
and DNS, producing hairpin vortices stretched by the
ambient shear. By this mechansim vorticity produced
in the viscous region is advected into the boundary
layer, making it turbulent. As in DNS and other LES
the hairpin vortices are often asymmetric – with one
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leg stronger than the other. The spanwise resolution
is found more important for the accurate prediction of
the coherent structure dynamics than the streamwise
resolution. The wall-normal resolution is critical for
the correct prediction of τw, which, in turn, is impor-
tant for making correct estimates of the drag.

 (a)

(b)

Figure 1. Perspectives of fully developed turbulent channel flow
simulations at (a) Reτ=395 and (b) Reτ=10000. Both datasets pre-
sented are obtained with the LDKM.

In figure 2 we compare our LES predictions of
the time-averaged streamwise velocity 〈 〉vx  (integrat-
ed over x and z) with the DNS data, [50], experimen-
tal data, [52], and analytical expressions. In figure 2a
we plot 〈 〉v ux / τ  against y/h from the wall, whereas
in figure 2b we plot 〈 〉v ux / τ  against y yu+= τ ν/ . For
Rτ=395 all LES models examined (cf. Table 2) show
excellent agreement with the DNS data across the en-
tire channel. The integrated difference along the cross-
stream coordinate, y, is smaller than 2% of the bulk
velocity for any model. Hence, when the flow is very
well resolved the details of the subgrid model are of
little importance to the resolved flow, since most of
the energy (about 98%) and structures are resolved on
the grid. For Rτ=2030 we still see good agreement be-
tween LES and experimental data, but with somewhat
larger scatter in the LES data. This case is reasonably
well resolved, with about 90% of the energy belong-
ing to the resolved scales. For Rτ=10,000 we do not
have any data to compare with, but we may compare

(asymptotically) with the lower Reτ-number velocity
profiles and the log-law. The scatter among the LES
models is now larger, and we find the best agreement
between the log-law and the LES results for DES and
LDKM followed, in turn, by MILES, OEEVM+WM
and OEEVM. The DES model is successful since the
Spalart-Allmares model works well for zero pressure-
gradient boundary-layers, [35]. The LDKM is success-
ful since νk responds to the accumulation of energy in
the small scales by adjusting the dissipation before it
contaminates the resolved scales. MILES performs
since it mimics the anisotropies of the resolved flow,
[42]. OEEVM+WM works since the channel flow is
dominated by two zero-pressure gradient boundary
layers, for which the wall model is tailor-made, but
the OEEVM appears unable to capture the near-wall
boundary layer very well.
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Figure 2. Time-averaged streamwise velocity profiles. (a) in lin-
ear scaling and (b) in logarithmic scaling for fully developed tur-
bulent channel flows at Reτ=395, 2030 and 10,000.

In figure 3 we compare LES predictions of the
resolved kinetic energy k vi= 〈 ′ 〉1

2
2 , where ′= −〈 〉v v v

are the velocity fluctuations, (integrated over x and z)
with experimental data, [50], DNS data, [52]. For
Rτ=395 very good agreement with the DNS results is
obtained across the entire channel for any LES model.
For Rτ=2030 the agreement between LES and data is
only fair; best agreement is obtained with the LDKM
and worst agreement is obtained with the DES model.
The trend is that the predicted profiles are wider than
the measured profiles, and that the LES models can-
not capture the peak in k, at about y+≈15, but over-
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predicts it by about 15%. For Rτ=10,000 the scatter
between the LES predictions is wider.
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Figure 3. Turbulent kinetic energy, k, profiles for fully developed
turbulent channel flows at Reτ=395, 2030 and 10,000.

In figure 4 we compare LES predictions of the
resolvable (Reynolds) shear stress R v vxy x y=〈 ′ ′ 〉 , with
experimental data, [50], and DNS data, [52], for the
total shear stress R v vxy x y=〈 ′ ′ 〉 . Both Rxy-profiles are
bounded by the line R u y hxy= τ

2 / , which constitute an
upper bound for Rxy. For Rτ=395 excellent agreement
with the DNS results is obtained between 0.3<y/h<1,
and between 0<y/h<0.3 R Rxy xy< , as a consequence
of the action of the subgrid model, that covers almost
80% of this difference. For Rτ=2030 and Rτ=10,000
similar results are observed, but since Rxy is expected
to follow R u y hxy= τ

2 /  asymptotically with increasing
Reτ-number, the fraction of the shear stress to be cov-
ered by the subgrid model is increasing, thus putting
larger demands on the subgrid model. The only excep-
tion from the general behaviour is the DES model,
which however gives good predictions for other quan-
tities examined. At present we do not know the cause
of these anomalities.
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Figure 4. Reynolds shear stress, Rxy, profiles for fully developed
turbulent channel flows at Reτ=395, 2030 and 10,000.

Comparing statistics from the LES with the
correlations of Dean, [53], U UC m m/ . Re .≈ ⋅ −1 28 0 016  and
Cf m≈ ⋅ −0 073 0 25. Re . , where UC is the mean centerline
velocity and Re /m mU= 2δ ν , shows good agreement
at Reτ=395, but at Reτ=2030 and 10,000 this agree-
ment declines. In general, however LDKM, DES and
MILES give best agreement. This is related to the re-

solution; at Reτ=395 the mean streak-spacing is well-
resolved, whereas for the remaining Reτ it is not. For
Reτ=2030 and 10,000 the mean streak-spacing seems
to be related to the spanwise resolution.

8. Flow over an Axisymmetric Hill
In our attempts to extend the use of LES to engineer-
ing problems of practical interest a particularly inter-
esting issue is that of flows over curved surfaces. In
[54] LES, using the LDKM, of the flow over an axi-
symmetric hill have been conducted and is compared
to measurements of Simpson et al, [55].

According to the investigations of Simpson et
al, [56], these flows produce complex vortical struc-
tures with multiple separation and re-attachment zon-
es covering a large part of the lee-side of the hill. It is
also observed that geometrically similar hills (of hill-
height H=2δ and H=δ) yield qualitatively and quanti-
tatively different flow dynamics. Hence, the flow past
such objects is very complicated. It is not yet fully
understood as to why a small change in the geometry
configuration results in a flow pattern that shows lit-
tle or no resemblance to the original one.

Figure 5 presents the geometry. The axisym-
metric hill-height H is 0.078 m with the circular base
of radius R=2H. The zenith of the hill is about 3.4H
downstream from the inflow boundary and the compu-
tational domain extends 6H in the spanwise direction.
The shape of the hill is defined analytically by,

y r J I r R I J r RH( ) [ ( ) ( / ) ( ) ( / )],.= −6 04844 0 0 0 0Λ Λ Λ Λ (28)

where Λ=3.1926, J0 is the Bessel function of the first
kind and I0 is the modified Bessel function of the first
kind. The Re-number, based on H and the flow veloc-
ity (v0=27.5 m/s), is about 1.3·105. A structured but
stretched grid of 256×128×128 cells is used, in which
the minimum grid spacing in the wall-normal directi-
on is approximately ∆y+≈4. This resolution is chosen
so as to give us enough grid points near the surface to
reasonably resolve the boundary layer and the sepa-
ration downstream of the hill.

Figure 5.  Schematic of the computational domain.

Simpson et al., [55], report profiles with the
speed v0 and with 0.1% freestream turbulence intensi-
ty, having a boundary layer thickness of δ99≈39mm,
and Reθ≈7300. Similar inflow profiles were used, in
which a Gaussian random field (0.1% of the mean) is
added to the inlet velocity profile in order to emulate
the freestream turbulence. To wash out the effects of
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the initial conditions the simulations are allowed to
evolve several flow-through-times before any data is
collected for analysis.

Figure 6 presents a comparison of the predicted
surface streamline pattern (colored by velocity magni-
tude) with the experimental oil flow pattern. We ob-
serve complex flow patterns on the lee-side of the hill
with multiple recirculation regions. Complex vortical
structures appear just downstream of the zenith of the
hill, where also multiple separations can be seen. Ini-
tially, these structures have some coherence upstream
of the hill but later, these structures break down into
small-scale structures. The velocity (not shown) sug-
gests separation on the lee-side that re-attaches and se-
parates. A similar multi-stage separation and reattach-
ment has been seen in experiments, [56].

                   (a)

(b)

Figure 6. Oil-flow visualizations (using streamlines colored by
the velocoty in the near-wall regions) for the numerical study (a)
and the experiments (b).

Typical results for the (time-averaged) static
pressure coefficient C p p p pP= − −( )/(˜ )0 0 , where p is
the local static pressure, p0 is the static reference pres-
sure and p̃  is the local total pressure are presented and
compared with the experimental measurement data in
figure 7. We find that LES predict the principal trends
observed experimentally. However, there are a few dif-
ferences in the contour patterns on the lee-side of the
hill where the vortical separations are observed. The
contour patterns remain symmetric about the hill cen-
ter plane upstream of separation zone.

   (a)

(b)

Figure 7. Measured (a) and predicted (b) static pressure coeffi-
cients CP contours over the hill surface.

Figure 8 presents comparisons for the stream-
wise velocity, normalized by the fricton velocity ut,
at a streamwise location of 3.69H downstream of the
hill peak for various spanwise locations on either side
of the center plane. The agreement between LES, us-
ing LDKM, and the experimental data is qualitatively
and quantitatively good. In particular, we notice that
the LES capture the detailed variation of the velocity
in the spanwise direction, which is considered promis-
ing considering the complexity of the flow.
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Figure 8. Comparison of the predicted and measured velocity
profiles at 3.69H downstream of the hill peak for various span-
wise locations on either side of the center plane

9. Flow over an Inclined Prolate Spheroid
Despite its simple geometry, the flow around a man-
œuvring prolate spheroid, or a prolate spheroid at an
incidence, figure 9, contains a rich gallery of complex
three-dimensional flow features. These include stagna-
tion flow, three-dimensional boundary layers under in-
fluence of pressure gradients and streamline curvature,
cross-flow separation and the formation of free vortex
sheets ensuing streamwise vortices. These features are
archetypes of flows around airborne and underwater
vehicles warranting an in-depth study.

(a)
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(b)

Figure 9. Perspective view of the cross-flow separation and the
associated longitudinal vortices on a 6:1 prolate spheroid at (a)
α=10° and (b) α=20°, respectively.

Here and in [57-58] we consider the flow around
a 6:1 prolate spheroid, mounted in a wind-tunnel with
rectangular cross-section, [59-66]. The body length is
L=1.37 m and the tunnel cross-section is 1.8×1.8 m2.
The freestream velocity is v0=46 m/s creating a body-
length Re-number of ReL=4.2·106. Detailed measure-
ments have been carried out at angles-of-attack betwe-
en α=0° and α=30°, [59-65], and here we focus on
α=10° and 20°. Contrary to the study of Hedin et al.,
[58], and for the simulations to be compared to those
of Constantinescu et al., [67], the computational do-
main consists of a sphere with radius R=2L. This has
the advantage of simplifying gridding, thus producing
grids of high quality with modest stretching, warpage
and skewness. The disadvantage is that the blocking
effects are neglected, but these are generally considered
small in comparison to neglecting the supporting
sting on which the body is mounted and the effects of
the freestream wind-tunnel specific flow.

The grid topology consists of two blocks: an in-
ner O-grid that wraps around the body, and an outer
O-grid that fills the region between the inner grid and
the outer spherical boundary. In [59-65], two grids of
about 0.8·106 and 1.6·106 cells are used. These grids
have average wall-normal distances of y+≈20 and 30,
respectively, and a radial stretching ratio (for the inner
O-grid) of 1.10. At the inlet, v n=v0  and ∂ ∂p/ n 0= ,
where n is the outward pointing unit normal, and at
the outlet p p= ∞  and ∂ ∂( )/v n n 0⋅ = . On the body, no-
slip conditions are utilized. After the initial transients
vanish, the statistical sampling was started, and suffi-
cient time (25,000 time steps) is allowed for each of
the runs to develop time-averaged data for the first and
second order statistical moments of p and v . Table 3
summarizes the results reported here.

Table 3. Prolate spheroid simulations.

run grid α subgrid model

I 0.8·106 10 OEEVM+WM
II 0.8·106 20 OEEVM
III 0.8·106 20 LDKM
IV 0.8·106 20 OEEVM+WM
V 1.6·106 20 OEEVM+WM

In figure 10 we present the static pressure coeffi-
cient C p p vP= 〈 〉−2 0 0

2( )/ , where p0 is a reference pres-

sure, in the meridian plane. For α=10° the agreement
between LES and experimental data is generally good,
especially on the leeward side. On the windward side,
in the aft region, there is some discrepancy, possibly
related to the presence of the support sting used in the
experiments but not included in the LES’. For α=20°
no experimental data exists, but good agreement is
found between the different LES’. In figure 10b, CP is
shown as function of ϕ (the azimuthal angle measured
from the symmetry plane on the windward side of the
body) at x/L=0.772. For α=10° the agreement be-
tween LES and experimental data is good with the ex-
ception of the sector between ϕ=120° and 150°. This
corresponds to the region beneath the primary vortex,
cf. figure 9, and from theoretical considerations we
expect a low-pressure patch on the hull beneath that
vortex. For α=20°, CP shows the existence of both a
primary and a secondary separation on the body and
the agreement between experimental data and LES is
good, especially on the windward side.
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Figure 10. Comparison of the static pressure coefficient, CP, at
(a) the meridian plane and (b) x/L=0.772.

Figure 11 shows the normalized time-averaged,
velocity components (U, V, W) in the body coordinate
system along two lines orthogonal to the body origi-
nating at x/L=0.6, ϕ=90°, and x/L=0.772, ϕ=90°, for
α=10° and α=20°, respectively. Here, U is tangent to
the body pointing towards the tail, V is normal to the
body (positive outwards) whereas W is orthogonal to
both U and V. For both angles-of-attack the LDKM
and the OEEVM+WM give good agreement between
predictions and experiments. OEEVM overpredicts U
and W in the outer part of the boundary layer at x/L=
0.6 and underpredicts U and W in the entire boundary
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layer at x/L=0.772. This is likely to be caused by in-
sufficient resolution of the inner part of the boundary
layer, which is taken care of by the wall-model in the
OEEVM+WM. Increasing the wall-normal resolution
with the OEEVM supports this, whereas increasing
the resolution in the volume with the OEEVM+WM
does not alter the profiles significantly.
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Figure 11. Comparison of the normalized velocity (U, V, W) in
the body surface coordinate system at (a) x/L=0.6, ϕ=90° and (b)
x/L=0.772, ϕ=90°. Note that the results and data for the α=10°
case are shifted one unit in the ordinate direction. For legend see
figure 10.

Figures 12 and 13 show secondary streamlines
superimposed on gray-scale contours of the resolvable
turbulent kinetic energy k= 〈 −〈 〉 〉1

2
2 1 2( ) /v v  (left) and

on U (right) In figure 12 we present results from the
OEEVM, and in figure 13 we show results from the
LDKM. For α=10° and x/L=0.6 neither experiments
nor LES show true vortices (defined by closed stream-
lines), but instead a sheet of fluid rolling-up. At x/L=
0.772 both experiments and LES show true vortices
at around ϕ≈145° and about 1.3 cm above the body
surface. For α=20° and x/L=0.6 the primary vortex is
at ϕ≈152° and 2.2 cm above the body surface for the
OEEVM, whereas for the LDKM it is at ϕ≈150° and
1.9 cm above the body surface. At x/L=0.772 the pri-
mary vortex is at ϕ≈152° and 3.0 cm above the body
surface for the OEEVM, whereas for the LDKM it is
at ϕ≈153° and 3.3 cm above the body surface. For α=
20° a secondary vortex is found close to the body at
ϕ≈140° at the after cross-section. For OEEVM+WM
and LDKM the agreement with the experimental data
is reasonable (within 15%), whereas for OEEVM the
primary vortices are too far away from the body sur-
face, but at the correct angle. This is related to the in-

correct boundary layer profiles and hull-pressure dis-
tributions attributed to the OEEVM.

(a) (b)

Figure 12. Secondary streamlines superimposed on contours of k
(left) and on U (right) for the OEEVM. (a) α=20° and x/L=0.6,
(b) α=20° and x/L=0.772.

(a)  (b)

(c) (d)

Figure 13. Secondary streamlines superimposed on contours of k
(left) and on U (right) for the LDKM. (a) α=10° and x/L=0.6, (b)
α=10° and x/L=0.772, (c) α=20° and x/L=0.6, and (d) α=20° and
x/L=0.772.

10. Summary and Outlook
When LES is used to study ‘building-block’ flows for
which the method originally was invented, it produces
excellent results. The dependency of the results on the
subgrid model is weak – almost all subgrid models
produce identical results. For free-flows (e.g. jets and
mixing layers) good agreement is usually obtained
even for very high Re-number flows. For high Re-
number wall-bounded flows, LES becomes more in-
volved as the scales become smaller and smaller as
the wall is approached. As the Re-number increases
we cannot afford resolving all scales even if local grid
refinement or adaptive meshes are used. This puts ad-
ditional demands on the subgrid model, which may be
combined with a separate wall-modell, as frequently
done in RANS. Here we have tried to highlight this
problem and to present an overview of methods that
currently are available.

The results presented suggest that the dynamic
approach, in which the model coefficients are deter-
mined from the smallest resolved scales, can produce
accurate predictions even on moderately fine grids,
thus allowing high Re-number flows to be investiga-
ted. The explanation for this appears to be that the
eddy-viscosity responds to the accumulation of energy
in the small scales by adjusting the dissipation before
it contaminates the resolved scales, although the sub-
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grid stress-tensor is not generally alined with the rate-
of-strain tensor. Structural models are theoretically
better suited for complex anisotropic flows but are
not always numerically stable, unless a fine grid can
be used. MILES, on the other hand, provides an in-
teresting alternative, being related to both structural
and functional models, but is associated with the ad-
vantage/drawback of its strong coupling with the nu-
merical schemes used. Wall-models provides an at-
tractive alternative, but appears to be sensitive to the
flow conditions, and is not allowed to deviate too
much from the flat plate boundary layer for which
they are developed. For the future the TLS method
and the homogenization-based LES models may pro-
vide very interesting alternatives.
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